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An irreducibility criterion for projective corepresentations is stated and specified to projective 
corepresentations of double Shubnikov point groups, where the choice of the considered factor 
systems is influenced by the representation theory of double Shubnikov space groups. 
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INTRODUCTION 

Projective corepresentations and corresponding 
Clebsch-Gordan series for such representations of Shubni
kov point or space groups are of importance for solid state 
physics. I The main objective of the present paper is firstly to 
generalize a well known irreducibility criterion2 for corepre
sentations to projective ones and secondly to extend the usu
al definition ofShubnikov point groups to corresponding 
double groups. The reasons for considering this generaliza
tion are to avoid the cumbersome distinction between "vec
tor" and "spinor" corepresentation of such groups and to 
prepare the discussion of double Shubnikov space groups, 
whose definition and representation theory will be investi
gated in a forthcoming paper. 

The material of this article is organized as follows. In 
Sec. I we state some necessary definitions and notations con
cerning projective corepresentations of a given finite group 
G. In Sec. II we consider special induced projective corepre
sentations of G. In order to be able to decide which type of 
projective unitary irreducible corepresentation (counirrep) is 
realized, we state in Sec. III an irreducibility criterion which 
generalizes the theorem of Koster and Dimmock. 2,1 Simul
taneously we construct for each type of projective counirrep 
unitary matrices which transform the previously mentioned 
induced corepresentations iilto "standard form." 1,3 Starting 
with the definition of double point groups, we define in Sec. 
IV corresponding double Shubnikov point groups of type II 
and type III. Influenced by the representation theory of dou
ble space groups, we discuss briefly in Sec. IV A projective 
unirreps of double point groups which belong to special fac
tor systems. Extending these special factor systems to double 
Shubnikov point groups oftype II and type III, we specify in 
Sec. IVB respectively Sec. IVC the irreducibility criteiron to 
these groups. 

I. PRELIMINARIES 

Let G = I H,sH J be a finite group which contains a nor
mal subgroup H of index 2. We call a matrix representation 
of G (over C) a unitary projective corepresentation, if the 
matrices R( g); gEG satisfy the following equations: 

• {R(g') 
R(g Y = R(g')* 

for all gEll, 

for all gESH, 

for all gjEG, (1.1) 

(1.2) 

R(s)+R(h )R(s) 

= a(h,s)a*(s,s-lhs)R(s-lhs)* for all hEll, (1.3) 

R(s)R(s)* = a(S,s)R(S2) with s2Ell, (1.4) 

R(s)R(h )* = a(s,h )R(sh) for all hEll, (1.5) 

where some of them are redundant but written down for 
convenience. Since the matrices are assumed to be unitary, 
the factor system a:G X G--C has the properties 

a( gl,g2)a( glg2,g3) 

= a( g 1,g~3)a( g2,g3) g, for all gjEG, 

a(e,g) = a(g,e) = 1 for allgEG, 

a(gl,g2t l = a(gl,g2)* for allgjEG, 

a( g,g-l) = a( g-l,g)8 for all gEG. 

(1.6) 

(1.7) 

(1.8) 

(1.9) 

Finally we call two unitary projective matrix corepre
sentations Rand R' equivalent, if there exists a unitary ma
trix W which satisfies 

W+R(g)Wg = R'(g) for allgEG. (1.10) 

II. INDUCED PROJECTIVE COREPRESENTATIONS 

Let us assume from the outset that a complete set of 
projective unirreps][) 6(h ), hEll (t5EA H), are given, which be
long to the considered standard factor system a. A H denotes 
the set of equivalence classes of the projective unirreps of H. 

Obviously the matrices p5( g) = (][)6rG)( g), gEG, 

o ] for all 
a(h,s)a*(s,s-lhs)D6(s-lhs)* 

(11.1) 

(11.2) 

form a 2n6 -dimensional (induced) corepresentation of G, if 
][)6(h); hEll is nt;- dimensional (compare with results of Ref. 
3). The remaining matrices p5(sh ); hEll are defined by (1.5). 
The properties (1.3) and (1.4) are readily verified with the aid 
of (1.6)-(1.9), where 

(11.3) 

(11.4) 

have to be taken into account. Like in Eq. (11.2) the symbol 
It; means the nil-dimensional unit matrix. 
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III. PROJECTIVE COUNIRREPS OF G 

By similar arguments as in Ref. 2 or Ref. 3, it is obvious 
to make an analogous character test for projective corepre
sentations, in order to be able to decide what type ofprojec
tive counirrep is realized. The corresponding formula reads 

(111.1) 

where XD(h ) = TrDD(h ), hEll. Thereby one has to note that 
(sh )2Ell, since S2, s- I hsEll. By transfering the arguments of 
Ref. 1 to projective corepresentations, i.e., by utilizing the 
orthogonality and representations properties of D'\ respec
tively the properties (1.6)-(1.9) we arrive to the formula 

{ 

+ 1 for 0 = aEA J (type I), 

C (0) = - 1 for 0 = {JEAII (type II), (111.2) 

o for 0 = rEAm (type III). 

This classification divides A H into three disjoint subsets, 
whose intersection yieldsA H . Moreover, (111.2) represents 
an irreducibility criterion for projective corepresentations, 
containing the special case of ordinary corepresentations in a 
consistent way. 

Now let us briefly discuss for the three different cases 
how the induced representations (11.1), (11.2) can be trans
ferred by unitary transformations into their "standard 
form.,,1.3 

Type I: Presupposed C (a) = + 1 is realized, there must 
exist a unitary n,,-dimensional matrix U" which sati~fies 

U" + D"(h )U" 

= o{h,s)a*(s,s-lhs)O"(s-lhs)* for all hEll, 

U"U"* = a(s,S)O"(S2), 

which implies that we can choose 

B"(h) = O"(h) for all hEll, B"(s) = U" 

(111.3) 

(111.4) 

(111.5) 

at which projective counirreps of type I of G are denoted by 
B"( g); gEG. Now the problem is to find a unitary 2n" - di
mensional matrix W" which decomposes the reducible pro
jective corepresentation lP"'( g), gEG into a direct sum of its 
irreducible constituents, 

W" + lP"'(h )W" = (a> 2)O"(h) for all hEll. 

wa + IP"(s) wa* = ( a> 2)U". 
Now it is easy to verify that the unitary matrix 

engenders the decompositions (111.6) and (111.7). 

(111.6) 

(III. 7) 

(111.8) 

Type II: Provided C (f3 ) = - 1 is realized, there must 
exist a unitary np- dimensional matrix uP with the 
properties 

UP+oP(h)Up 

= a(h,s)a*(s,s-lhs)oP(s-lhs)* for all hEll 

UpUp* = - a(s,S)oP(S2). 

(111.9) 

(111.10) 

Now it is readily verified that there exists a unitary 2np
dimensional matrix WP, so that 
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wp + JPI3 (h) wp = Bp (h) 

= [oPo(h) 0] oP (h) for all hEll, (111.11) 

(111.12) 

(Of course the right hand side of (111.12) contains a further 
convention, namely the place of the minus sign.) A simple 
calCulation shows that Eqs. (111.11) and (111.12) can be 
achieved, e.g., by 

wp = [U~+ ~ ] . (111.13) 

In this connection we have to note that the minus sign in Eq. 
(111.10) prevents that Bp (s) can be carried over in a direct 
sum. 

Type III: The third and last case is characterized 
through the fact, that OY(h ), hEll, and a(h,s) 
a*(s,s-lhs)OY(s-lhs)* are inequivalent projective unirreps of 
the normal subgroup H. This implies that there must exist a 
unitary ny-dimensional matrix Z Y, so that 

Z Y + OY(h)Z Y = a(h,s)a*(s,s-lhs)OY(s-lhs)* for all hEll, 

where r( #Y)EAm. (111.14) 

Hence 

BY(h ) = PY(h ), hEll, and BY(s) = pY(s) (111.15) 

define already a projective counirrep in standard form of 
type III of G. 

Concluding this section, we call projective counirreps 
to be in "standard form", if they are given by (111.5) for type 
I corepresentations, by (111.11), (111.12) for type II corepre
sentations and by (111.15) for type III corepresentations. 
Consequently projective counirreps in standard form are ob
tained as follows. First compute a complete set of projective 
unirreps of the normal subgroup H. Secondly inspect (111.1) 
in order to decide what type of counirrep is realized. Then 
depending on the three different cases, one has to determine 
unitary matrices U D satisfying either (111.3) with (111.4), or 
(111.9) with (111.10), or (111.14). Provided the respective ma
trices U lJ have been determined, type I corepresentations 
follow from (111.5), type II corepresentations from (111.11), 
(111.12) and finally type III corepresentations from (111.15). 

IV. DOUBLE SHUBNIKOV POINT GROUPS 

A. Double point groups 

As usual we call the group P t, 
P~=P*XS2' S2= IE,!] (IV.l) 

or any subgroup ofthis group a "double point group," if P * is 
a finite subgroup of SU (2) and P t itself a direct product 
group of P * with S2' where I represents the "inversion." 
Concerning the group elements of Pt (or any of its sub
groups) we adopt the following notation: 

R gRJm =gEPt, a = 1,2, m = 1,2, 

RoEZ [SU(2)] = Z [P *] = I E,Ro I, 
RjEP*:Z [P*]. 

R. Dirl 

(IV.2) 

(lV.3) 

(IV.4) 

1140 



                                                                                                                                    

Thereby Ro is the nontrivial element of the center Z [P *1 of 
P *, P *:Z [P *] the set ofteft coset representatives of P * (or of 
the considered subgroup of P V with respect to Z [P *1. For 
notational convenience the elements of P t are sometimes 
briefly written as g. Furthermore, we have 

(IV.S) 

where E represents the identity element of P Z. The multipli

cation law of P treads 

(R ~R/m)(R gRJn) =gg' = R ~+ bRjRkl m + n, (IV.6) 

RjRk = Z (j,k )Rjk' 

Z(j,k)EZ [P*] and RjkEP*:Z [P*]. (IV.7) 

Incase of a subgroup F of P t, which is not a direct product 
like (IV. 1), one has to be more careful when establishing the 
corresponding multiplication law, even though the group 
elements of each subgroup of P Z can be factorized like in 
(IV.2). The difference between such a subgroup F and P Z 
arises therefrom that the indices of the left coset representa
tives R/ m(j)EF:Z [P *] cannot be chosen independently as in 
Eq. (IV.2). Finally we assume that the factor group 

PZ/Z [p*]=ph • (IV. 8) 

respectively the factor groups of the subgroups of P Z with 
respect to Z [p *], are isomorphic to one of the 32 point 
groups, which are of interest for physical applications. 

In the following we want to discuss projective unirreps of P t 
which belong to special factor systems. Motivated through 
the representation theory of "double space groups" we con
sider factor systems y: Pt xPt~C with the following 
properties: 

y(R ~R/m, R gRJn) = y(R/m, Rkr) 

for all a,b = 1,2, m,n = 1,2, and Rj,RkEP*:Z [P*]. (IV.9) 

Assuming that a complete set of projective unirreps of P Z is 
known, we call in particular the set of matrices 

[)C5 = [Db(g):gEPZ}, t5EAp~(r) (IV. 10) 

a nb-dimensional projective unirrep of PZ andAp .. ) the set ,,(r 
of all equivalence classes (which of course depends on the 
considered factor system y). Due to Schurs Lemma (with 
respect to P V it follows from the group properties 
R~ = gRo; gEPZ and the special factor system (IV.9) for 
each projective unirrep 

Db(Ro).Db( g) = Db( g)Db(Ro) for all gEP Z (IV. 11 ) 

that within each projective unirrep Db the nontrivial element 
Ro of the center of P * must be represented by the multiple of 
the corresponding identity matrix lb' Since DO is assumed to 
be unitary we have 

DO(Ro) = ± 10 (IV. 12) 

which remain valid, if restricting to any subgroup of P Z and 
considering factor systems which have analogous properties 
as (IV.9). 

Concluding this subsection, we remark that for trivial 

factor systems [being equivalent toy( g,g') = I,g,g'EPZ J un
irreps of the factor group P Z /Z [P *] are called "vector" 
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representations, if associated with the plus sign in (IV.I2), 
respectively "spinor" -representations, if associated with the 
minus sign in (IV.I2). Obviously such an artificial distinction 
of representations is meaningless, if considering from the 
outset double groups. As already mentioned, factor systems 
of the type (IV.9) may occur, when unirreps ofnonsymmor
phic "double space groups" are determined by means of in
duction. A discussion of such space groups and their exten
sions to "double Shubnikov space groups" will be given in a 
forthcoming paper, where the main objective will be directed 
to the computation of Clebsch-Gordan coefficients. In this 
connection we remark, that the results of Refs. 4 and 5 may 
only concern vector representations of the homomorphic 
image of such double Shubnikov space groups. 

B. Double ShubnikoY pOint groups of type II 

We call a group G Z a double Shubnikov point group of 

type II, which is generated by the double point group P Z, if 
its structure is given through 

Gt =PtU[K}Pt, (IV.13) 

in which 

Kg = gK for all gEPZ, (IV.14) 

~=RO~K-I=KRo. (IV.I5) 

Consequently, double Shubnikov point groups of type II 
which are generated by any subgroup of P Z are correspond
ingly defined. Since K commutes (per definition) with each 
element of P Z, it must belong to the center of G t, 

Z [GZ] = [E,Ro,K,KRo}' (IV. 16) 

(Note that Z [G Z] is isomorphic to the "Kleinsche Vierer
gruppe".) Roughly speaking the group elements Kg, gEPZ 
represents "anti unitary" group elements. (This is, of course, 
a somewhat misleading diction, since elements of an abstract 
group cannot be associated with additional properties, like 
antiunitarity, or something else). Apart from this we have 

(Kg)g' = g(Kg') for all g,g'EPZ 

(Kg)(Kg') = R~g' for all g,g'EPZ, 

(IV. 17) 

(IV. 18) 

which represents together with (IV.6) the multiplication law 
of G Z· Consequently G Z is neither a direct nor a semi-direct 
product group, although K engenders only the identical auto
morphism of P Z, i.e., 

KgK- I
. = g for all gEP Z, (IV. 19) 

whereas the homomorphic image Gh ofG Z being defined by 

(lV.20) 

is a direct product group, namely Gh = Ph X [E,K}. (Note 
that the property of Z [G t J to be a normal subgroup of G 'I: 
also allows us tei define the factor group C"kIZ (C:l which is 
isomorphic to the ordinary point Ph =P Z /Z [P *] in 
question.) 

Analogously to the foregoing subsection we want to dis
cuss projective representations of G Z, which now have to be 
corepresentations. By similar arguments as previously we 
restrict our considerations to factor systems 
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y(K" g,K'I g') = y(g,g') 

forallg,g'EP:andp,q= 1,2, (IV.21) 

which are trivially extended from a factor system of P: [sat
isfying (IV.9)] to a factor system for G:. 

Specifying the general irreducibility criterion (111.1) to 
this case, we obtain 

1 

I
P*I I y(g,g)XO((Kg)2) = C(8), (IV.22) 

h gEPt 

where the property (IV.21) of the factor system y has been 
already taken into account and the character XO( g') is given 
by the trace of[)O( g'), g'EP:. Utilizing furthermore 

(Kg? = (KR gRJm)2 = RoR J = RoZ (j,j)Rjj , (IV.23) 

XO(Ro.fJ) = sgnXO(Ro)XD( g) for all gEP:, (IV. 24) 

Eq. (IV.22) simplifies to 

_1_ ~ y(R 1 m R 1 m)xo(R 2) 
IP*lm=-I.2 ] 'J ] 

R
J 

{ 

+ sgnXO (Ro), 

= - sgnXO(Ro), 

0, 

type I counirrep, 

type II counirrep, 

type III counirrep. 

(IV.25) 

Concluding this subsection we mentioned that the well 
known results concerning vector or spin or representations of 

P:/Z [P*] with their corepresentations are contained in a 
consistent way in formula (IV.25). The advantage of the pre
sent considerations is that a distinction of vector and spinor 
representations is meaningless, since only "ordinary" repre
sentations of P:, respectively corepresentations of G : have 
to be discussed. Nevertheless these considerations should 
make clear, that already for corepresentations belonging to 
the identical factor system, it is reasonable to distinguish 
carefully between the reality of unirreps of P: and the type 
of the corresponding counirreps of G : . 

c. Double ShubnikoY point groups of type III 

In order to be able to define a double Shubnikov point 
group M: of type III, which is generated by a subgroup H * 
of index 2 of the double point P :, let us start with some 
definitions and notations: 

P: = H*u!B jH* 

Z[H*] = Z[P*]. 

(IV.26) 

(IV.27) 

Taking condition (IV.27) into account, we can choose with
out loss of generality the left coset representative B as 
follows: 

B = RJm; t,m = fixed 

R,EP*:Z [P*]. 

This choice for B lead us to 

B 2 = R,2 = Z(t,t)RttER*, 

Z(t,t)EZ [P*], RttER*:Z [H*], 

(IV.28) 

(IV.29) 

(IV.30) 

where we now introduce for convenience the notation R gHj 
= hER*, withR gEZ [H*] andHjER*:Z [H*]. (Obvious

ly similar considerations are necessary in order to be able to 
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define for a subgroup of P: a corresponding double Shubni
kov point group of type III.) 

We call the group M: , 
M: =H*U!KB jH*, (IV.31) 

a double Shubnikov point group of type III if 

h (KBh') = KhBh 'E!KB jH* for all h,h 'ER*, 

(KBh )(KBh ') = RoBhBh 'ER * for all h,h 'ER *. 
Consequently, 

(KB)2 = RoB 2 = RoR, 2 = RoZ (t,t )Rtt' 

(IV.32) 

(IV.33) 

(IV. 34) 

which implies that there can be realized two quite different 
situations, namely Z (t,t ) = E or Z (t,t ) = Ro, depending on 
the considered subgroup H * of P:. Apart from this, we 
have, furthermore, 

(KB t l = KRoB- 1 

= (KB )RoZ (t,t)R ,-; 1 = Z (t,t)R ,-; 1 (KB), (IV.35) 

B- 1 = R ,- 1 1 m = Z (t,t)R ,-; 1 B = BZ (t,t)R ,-; I, (IV.36) 

R ,-I = Z (t,t)R ,-; 1 R, = Z (t,t )R,R tt- I
, (IV.37) 

which gives rise to a nontrivial automorphism of H *, 

(KB)h (KB t l = (KB )(R gH)(KB t l 

= R a BHB-1 = R a R HR -I_u* (IV.38) o ] 0 , ] , t:::fl. • 

Note that M: is not isomorphic to P:, but M:/Z [P*] 
'-"-Ph holds. 

Turning to the problem of constructing projective 
counirreps of M:, we restrict our considerations to factor 
systems which satisfy the properties 

y(R g~, R ~Hk) = y(Hj,Hk) 

forall~,HkER*:Z[H*] and a,b= 1,2, (IV.39) 

y(R gHj,(KB)R ~Hk) = y(Hj,BHk ), 

Y(KB)R ~Hj' R ~Hk) = y(BHj,Hk), 

Y(KB)R ~Hj,(KB)R ~Hk) = y(BHj,BHk), 

and additional (1.6) and (1.9), which are, of course, 
nontrivial. 

(IV.40) 

(IV.41) 

(IV.42) 

Provided a complete set of projective unirreps of H * is 
known, where 

D'" = I [)'''(h ):hER * J, wEAH.(y) (IV.43) 

(is a n,,, -dimensional projective unirrep of H *), there remains 
the task of deciding what type of projective corepresentation 
of M: is induced due to (11.1), (11.2). Specifying the irreduci
bility criterion (111.1) to the present case, we have by virtue of 

(KBh)2 = (KBR ~Hy = Ro(R,HY, 

XW(Roh ) = sgnXW(Ro)XW(h ) for all hER *, 

(IV.44) 

(IV.45) 

where XW(RoH) = TrD"'(RoH), the following final formula 
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_2_ 'Ly(BHj,BHj) X"'«R,Hjf) 
IH·I Hj 

{ 
+ sgnX:(Ro), type I counirrep, 

= - sgnX (Ro), type II counirrep, 

0, type III counirrep. 

(IV.46) 

Analogous to the previous subsection one would be 
forced to consider vector and spinor representations, if re
stricting to the factor groupMh -:::::::.M~/Z [p.] (and discuss
ing representations which belong to the special trivial factor 
system (y.,.) = 1). Consequently the present approach is 
more appropriated than the previous mentioned one, since a 
distinction of vector and spinor representations for M ~ is 
now meaningless. 

SUMMARY 

It was the aim of the present article to generalize an 
irreducibility criterion for ordinary corepresentations to 
projective ones, to determine quite general unitary matrices 
transforming induced projective corepresentations into 
"standard form," to define double Shubnikov point groups 
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(in order to avoid a somewhat cumbersome distinction of 
vector and spinor representations) and to specify the general 
irreducibility criterion to projective corepresentations of 
these groups. The choice of the (nontrivial) factor systems is 
influenced by the representation theory of double Shubnikov 
space groups (whose representation theory with application 
to Clebsch-Gordan series will be discussed in a forthcoming 
paper). Apart from this we have shown among others that 
double Shubnikov point groups of type II do not form a 
direct product group, although the special "anti unitary" 
group element engenders only the trivial automorphism of 
the normal subgroup of index 2. 
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4R. Dirl, "Selection rules for type II Shubnikov space groups," J. Math. 
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The permutations, group multiplication tables, decomposition of permutations into neighboring 
transpositions, representation matrix elements, basis states, and basis state operators have been 
constructed for the symmetric groups Sin), n = 1, ... ,5. Part of the results have been relegated to 
PAPS. The algorithm for generating the permutations of the symmetric groups is discussed. 

PACS numbers: 02.20.Df 

Though the symmetric groups and their representa
tions are well understood, with properties worked out thor
oughly, the results are often implicit. Clearly having these 
results made explicit should be useful. 

Here we present, explicitly, various objects for the sym
metric group and their representations, which have been 
generated by computer programs described elsewhere. 1.2 

These programs, having been written, are now available, and 
can be used for any suitable application as well as for the 
construction of these objects for other symmetric groups 
than are considered here. 

This work is a continuation of a project whose results 
have already been presented. 3

-
7 All terminology, notation, 

and concepts are based on these papers, which also have 
references to other work on the symmetric groups. 

The results of this paper are in the tables, whose cap
tions describe the methods for using them, as well as some 
conventions. Only parts of the tables are included, the re
mainder being in PAPS. K 

For the group itself the objects are a list of generators 
(the permutations), the group multiplication tables, and the 
decomposition of permutations into products of neighboring 
transpositions.'! The permutations are given in Table I 
(which thereby gives the indices by which they will be re
ferred to elsewhere), the group tables are in Table II, and the 
decomposition into neighboring transpositions in Table III. 

Representations are usually the aspect of group theory 
of most interest to physicists. The objects associated with 
them are given here for the orthogonal representations. The 
rules for converting these to the corresponding objects for 
the semi normal representations have been stated previous
ly. 10 The frames and tableaus have already been given. 11 

Here we present the representation matrices for all the per
mutations (Table IV), the basis vector operators (the ~ 's for 
the orthogonal representations and the e's for the seminor
mal representations), 12 and the representation basis state 
vectors (Table V). 

Each basis vector operator is a sum over all permuta
tions, each times a matrix element and with an overall nu
merical factor. The permutations in this sum operate on in
dices (say, subscripts offunctions) and permute them. The 
representation basis state vectors are found by having a basis 
vector operator act on a function with n indices [for Sin)], 
producing a sum over functions with different permutations 

of indices, each times the appropriate matrix element, times 
the overall numerical factor. 

As written, with the stated overall factor, the basis vec
tor operators are orthonormal. 13 Thus, the basis states are 
also orthonormal if the product of two of the functions is 
defined as I when the permutations of the indices are the 
same, and 0 if the permutations of the indices differ. 

The specific functions are, of course, irrelevent here. All 
we are interested in is the value of the matrix element going 
with each ordering of the indices. Thus, the basis state vec
tors are presented as a set of numerals, which are the indices 
of any function we wish, paired with the corresponding ma
trix element, and with the value of the overall factor. 

The results presented here are for the symmetric 
groups. However, any finite group is a subgroup of some 
symmetric group 14 (Cayley's theorem). Thus, once the inclu
sion rules and the decomposition into irreducible representa
tions are known, all the objects presented are also available 
for any finite group (at least implicitly). 

In Appendix A we discuss the algorithm used for gener
ating the pemutations. In Appendix B we consider the maxi
mum number of neighboring transpositions a permutation 
decomposes into. 
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APPENDIX A: THE ALGORITHM FOR THE GENERATION 
OF THE PERMUTATIONS 

Each permutation of the symmetric group Sin) is to be 
generated, and generated only once. This will produce n! 
distinct permutations, each a product in the form of indepen
dent cycles, each cycle being a pair of parentheses enclosing 
a set of numerals. 

The algorithm is iterative on n, starting from n = 2 and 
at each stage using the permutations generated for Sin - 1). 
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Start with the string of numerals 2···n. and produce 
from it. by the application of all the permutations ofS(n - 1). 
the (n - I)! different strings in the numerals 2 .. ··.n. these be
ing all the permutations of these numerals. Into each string 
insert the numeral 1. in every position. This then produces 
the n! different strings in the numerals 1 ..... n. which are the n! 
permutations of these numerals. From these strings the per
mutation operators are generated. 

Getting the permutations is now simply a matter of in
serting parentheses in the strings. The set of cycle lengths is 
the same as the set of row lengths of the frames labeling the 
representations. since both consist of all the partitions of the 
integer n. Thus. the cycle lengths are known. So. into each of 
the above strings. parentheses can be inserted at such posi
tions as to give all the possible set of cycles. Each string then 
will lead to several permutations. one for each set of cycles. 

The problem is that while this will produce every per
mutation. it will produce each several times. So rules must be 
introduced to determine how each string is to be cut up into 
cycles (by insertion of parentheses) in order to generate each 
permutation. and only once. 

A cycle is determined by the set of numerals it contains 
and by their order. But the numeral which appears first is 
irrelevant; every rotation of the numerals. keeping the order 
fixed. gives the same cycle. Also. the cycles commute since 
each numeral appears in only one cycle. Thus. the ordering 
of the cycles within the permutation is irrelevant. 

Thus. the rules for the insertion of the parentheses are: 
each set of cycle (or frame) lengths is considered in turn. 
according to the previously given ordering.'s For each set of 
cycle lengths. everyone of the above strings of permutations 
of 1 ... ·.n is taken in turn. Then the set of numerals which 
would be the first in their cycles. if parentheses were inserted 
according to the current cycle lengths. is considered. Each of 
these numbers is required to be the smallest in its cycle. and 
the first numerals in every set of equal-length cycles are re
quired to increase from left to right (cycle lengths are or
dered to be nonincreasing from left to right). 

Those strings. and only those. which pass both of these 
tests are used to form permutations by the insertion of paren
theses according to the current set of cycle lengths. 

Does this procedure give every permutation. and each 
only once? 

Consider uniqueness first. A given string will lead to 
several permutations. but each will have a different set of 
cycle lengths. and so are all different. And a given set of cycle 
lengths will appear several times. giving permutations ob
tained from different strings. In any two of these. at least two 
numerals will be in different positions. The only way they 
can give the same permutation is if the numerals which dif
fered between the two strings all belonged to the same cycle 
(or. more generally. broke up into several groups of corre
sponding sets of numerals. each corresponding set belonging 
to a single cycle). If the two sets of numerals in the two corre
sponding cycles were in different orders. they would give 
different permutations. For both cycles the first number 
must be the same. the smallest in the cycle. Since the first 
number is the same. and the order of the rest of the numerals 
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is the same. then all numerals must be in the same positions. 
Thus. two different strings cannot give identical cycles. So 
each permutation is generated no more than once. 

Is every permutation generated? Clearly. every possible 
permutation can be made to obey the rules. The numerals in 
every cycle can be rotated until the smallest one is at the left. 
and the cycles of equal length permuted until the left-most 
elements are in increasing order from left to right. 

Consider any permutation. If its parentheses are re
moved. then it corresponds to one of the strings generated as 
discussed above (since all such strings are generated). Its par
entheses form one of the allowed set of cycle lengths. which 
is. therefore. used in the above procedure. The permutation 
obeys the rules given above (or if not so written, can be 
brought to that form). Thus. when the corresponding set of 
cycle lengths and the string are considered. the parentheses 
will be inserted, and the permutation constructed. 

So every permutation is constructed by the procedure. 

APPENDIX B: THE MAXIMUM NUMBER OF 
NEIGHBORING TRANSPOSITIONS 

Any permutation can be written as a product of neigh
boring transpositions. 9 The maximum number of neighbor
ing transpositions. subject to a convention we use. into which 
any permutation can decompose (as a function ofn) is needed 
in some computer calculations. We find it here. 

Any permutation can be decomposed as (i,i2'''in ) 

= (i ,i2)(i2i}) .. ·(in _ ,in)' If this permutation consists of more 
than one cycle, the only effect will be that some of the trans
positions do not appear in this decomposition. Since we are 
interested in the largest number of transpositions, we only 
consider single-cycle transpositions. Now each transposi
tion. with the convention i, < ib, can be written as (i,ib) = 

(li,)(lib )(li,). unless i, = 1. And (1(,,) = (("i", _ , )(iw _ ,iw_ 2) 
· .. (21 )(21 )(21 ) .. ·(iw _ , )iw' In this last expression there are 
2(iw - 1) + 1 terms. The number of terms resulting from 
(iJb) is 2[(2i, - 1) + 1] + [2(ib - 1) + 1] = 4i, 
+ 2ib - 1 (but when i, = 1 this is 2ib - 1). 

The permutation we consider is (234 .. ·n - 1 n 1) 
= (23)(34) .. ·(n - 1 n)(nl). Eachnumeralfrom 3ton -1 will 

appear in two neighboring transpositions. in one of which it 
will be the larger numeral. in the other the smaller. Thus, 
there are 6i transpositions contributed by each numeral i. 
from 3 to n - 1. Summing we get 3n 2 

- 3n - 18. The nu
meral2 contributes 8 transpositions. The numeral n contrib
utes 2n from (n - 1 n) and 2n - 1 from (In). There are n - 2 
transpositions so the - 3 term contributes - 3(n - 2). 

Thus. the total number of neighboring transpositions is 
3n 2 

- 2n - 5. 
Does this permutation give the largest number of neigh

boring transpositions? All the numerals except two appear in 
two permutations. These two should be as small as possible 
(because the number of neighboring transpositions is propor
tional to the value of the numeral and is the sum of the values 
for each of the two transpositions. for those in two). This 
permutation has the two exceptional numerals 1 and 2. 
clearly the smallest possible. 

The other way in which the total could be increased is if 

M. F. Solo, Jr. and R. Mirman 1145 



                                                                                                                                    

larger numerals appeared as the smaller numeral in more 
tranpositions than in the above case, so their contribution 
would be 8; instead of 6;. (This would mean some other nu
meral would be the larger one in more cases). In general, any 
permutation can be obtained from the above by applying to it 
some permutation, which is a product of transpositions. 
Consider a transposition which interchanges numerals sand 
b, with s < b. Before the interchange the contribution of these 
two was 6b + 6s, and now it becomes 2b + 8s, which is al
ways smaller. So any other permutation gives fewer neigh
boring transpositions. 

So the maximum number of neighboring transpositions 
is 3n 2 

- 2n - 5. 

APPENDIX C: TABLE DESCRIPTIONS 
The permutations for S (n) are listed in Table I, and in

dexed, the index being enclosed in double parentheses. They 
will be referred by these indices. Each permutation is written 
as a product of cycles, and acts from right to left. Thus, (13) 
(254)(6) leaves the subscript in position 6 unchanged (not the 
number 6), replaces the subscript in position 2 by that in 
position 5, which is replaced by that in position 4, which is 
replaced by that in position 2. Finally, indices in positions 1 
and 3 are interchanged. For this table, the ordering of the 
cycles is irrelevant, for they commute. But when products of 
permutations are considered there will be noncommuting 
cycles. In these products the right permutation acts first, and 
then the left permutation acts on the result. Thus 
(134)(25) X (15)(23)(4) means that the first and fifth indices of 
the original string are interchanged, the second and third 
indices are interchanged, and then (134 )(25) acts on the resul
tant string of indices (interchanging the second and fifth in
dices of this new string and so on) to get the final string of 
indices. Thus, for example, (13)(234)((1234) = /(4312), not 
/(3142). In the table the value ofn is listed, followed by the n! 
permutations for that n. 

The product of every pair of permutations, the group 
mUltiplication table, is in Table II. The previous paragraph 
gives the conventions used, and Table I gives the indices for 
the permutations, which are used here to refer to them. In 
the intersection of row i and columnj is the ordinal of the 
permutation obtained from the product of the permutation 
whose index is at the head of columnj and the permutation 
whose index is at the left of row i. In writing this product the 
permutation at the head of the column is written to the right 
of the permutation labeling the row. Thus, the column-head
ing permutation acts on a string and then the row-labeling 
permutation acts on the resultant to give the final string. The 
final string is the same as would be obtained by having the 
resultant permutation (whose ordinal is at the intersection of 
row i and column j) act on the original string. The table is 
headed by the column indices, doubly underlined, at the top, 
in blocks of24. The row indices, at the left followed by a right 
parenthesis, are repeated for each set of 24 columns. 

Every permutation can be written as a product of neigh
boring transpositions (the proof and rule are given by Ruth
erford9

). The actual decomposition is needed to find the re
presentation matrices (which are known explicitly for only 
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the neighboring transpositions 16). The decomposition is giv
en here explicitly, following the value of n. The convention 
for the ordering of the transpositions is given above. 

The decomposition for each permutation is on the line 
following the permutations' index. To save space (12)( 12)(12) 
has been replaced by (12), to which it is equal. The neighbor
ing transpositions also decompose in this manner, and are 
included (only because it is simpler to keep them). All the 
permutations are given [except the identity and (12) permu
tations]. 

All the representation matrices, for all representations, 
for each S(n) are given in Table IV. These are for the orthogo
nal representations, but can be simply converted to those of 
the seminormal representations. JO The ordering of the repre
sentations (the frames) and the states (the tableaux) is the 
same as that given previously. 15 For each value of n there is 
the ordinal of each representation, followed by the ordinals 
of the permutations and after each the representation matrix 
for that permutation. The rows and columns are labeled by 
tableaux,3.4 which can be found from Table II of Ref. 4. The 
table does not include the first representation for each n (the 
one whose frame is a single column) or the last (whose frame 
is a single row). For the latter representation all matrices are 
1, for the former the matrices are 1 for even permutations 
and - 1 for odd ones. The parities of the permutations are 
clear from the results in Table III. Since S(2) has only one
dimensional representations it is not included. 

The basis operators and vectors are labeled by three 
indices, giving the equivalence class, representation, and ba
sis vector (the state). The equivalence class is labeled by a 
frame, specified by its row lengths, which have been given 
previously.4 In Table V for each n are the operators and 
vectors, each preceded by a line giving explicitly the frame 
ordinal (which has been previously defined II), and the values 
of i andj which specify the state and representation respec
tively, and which are the indices on the basis state operators 
(the e's, or 5 's). The last number on this line is the value of 0, 
which is the number, which depends only on the frame, by 
which the vectors following should be divided for correct 
normalization. Ll The state vectors are obtained by having 
the basis state operators act on some function with n indices, 
and are sums of terms each with a different permutation of 
the indices, times the appropriate matrix element, divided by 
the overall numerical factor given in the previous line. Of 
course, only the indices are important. Thus, the state vec
tors are given as sums of matrix elements each times a func
tion, labeled by a, with the appropriate permutation of indi
ces. The basis state operator is the sum of matrix elements 
times the appropriate permutation, divided by the overall 
numerical factor. The states and operators differ in their ap
pearance only in that one has a permutation, the other the 
permuted indices. Thus, under each set of permuted indices 
is the ordinal of the corresponding permutation, and substi
tuting that perm utation in the line above gives the operators. 
These operators and states are in the orthogonal representa
tion and can easily be converted to the seminormal. 10 
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TABLE II. The Group Multiplication Tables. T ABLE I. Permutations. 

5( 2) 5(2 ) 
,,1))- (I )(211 ((2 ))-021; ............. 

j) 5(3) 
21 "1))-(1)(2 )(311 ! (211-(l anll f(3))-1l3)(2); ( (4 ) I- 123 ) 11 n ((~) ) .. ( lZ3}; 

11611- (1321 ; 

SH) \(3) 
I [l))- [l 1121 (31(H, 1(2))-112)I3)H)' 1(3)) -(13)( 2)(4)' I{HI-nOIlZII3l, ( (5))· I Z3) 11 II., , ............................. (16) )-(24)11 )0); (C1)).C3~) 0)(2); r (8) '.(2) (34 J; (19) )-1 13) (24); (CI0))"(14)(2~'; 

\) Z 3 (11\))-1123)14), CCIZ))·(13ZJC.'; (113))-1143) (2); (114) )-(}H)!3); (1l5)):(l3~) (2); 

2) 1 6 (116))-(142)(3); (C17))· C 23") (1 ); ((]8))·CZI\J)(1) i ((19) )-flZl4-); ((20) )·e 132"'; 
3) 5 1 (lZI ))-(143211 (rZ2) )-rU'l), (123))- (lH2); ((20))·11423); 

OJ 6 5 
5) 3 4 
6) 4 2 

5(0) 
9 10 11 12 J3 14 15 16 11 18 19 20 21 22 23 24 

.................................. ., ......................... : .... '" _ ...... " = ... ; ,,:"': = ""',,: ""' ......... ",,,.,.,.,, """ =:,. 
\) 2 3 4 5 6 7 8 9 10 1\ 12 13 14 15 16 17 
2) I 12 16 11 14 8 7 20 24 5 3 21 6 23 4 19 
3) II 1 13 12 9 15 19 6 21 2 4 22 7 ZO 23 
OJ 14 15 1 10 16 13 22 23 5 19 20 7 2 3 6 H 
5) 12 1\ 10 I 18 17 23 22 4 3 2 H 20 19 21 7 
6) 16 9 14 17 1 18 21 3 19 24 23 22 4 20 2 5 
71 7 8 \3 15 18 17 1 2 24 20 22 21 3 19 4 23 6 
8) 8 1 21 23 22 19 2 1 10 9 18 \3 12 17 H 15 )0 
9) 9 24 6 Z2 23 3 ZO 10 I 8 16 11 14 13 18 11 12 

10) 10 20 19 • 21 2. 9 8 1 15 14 17 12 11 18 J3 
11) 1\ 3 5 20 2 ?2 19 15 18 16 12 1 10 9 17 \3 8 
12) 12 5 2 21 3 20 23 17 14 \3 1 II 16 18 8 10 15 
13) \3 22 1 3 a 20 • H 17 12 8 18 15 11 I • 16 
14) 14 • 20 6 19 2 22 13 12 17 10 15 18 16 9 1 11 
15) 15 19 4 1 20 23 3 11 16 18 14 10 I 8 13 17 9 
16) 16 6 23 2 2. • 21 18 15 1\ 17 • 8 1 12 14 10 
171 17 23 2. 19 6 7 5 12 13 H • 16 II 15 10 8 18 
18) 18 21 22 ze 1 5 6 16 II 15 13 8 • Ie 14 1 Z ) 

19) 19 15 10 J1 " 8 II 3 21 6 20 • 5 23 2. 1 22 
20) 20 10 14 Ie 15 12 9 24 2 7 • 19 6 21 22 5 3 
21) 21 18 8 12 13 10 16 6 19 3 7 22 23 5 2 20 • 
Z2) 22 J3 18 9 8 II 14 4 5 Z3 21 7 20 H 6 3 2 
23) Z3 11 16 8 9 15 12 5 • 22 6 Z4 2 7 21 l' 20 
20) Z4 9 17 II 16 \3 10 20 7 2 23 6 19 3 5 22 21 

TABLE IV. Representation matrices. 

SO) FRAP"IE: S(" FRAME: 
1 I 

I.OOOOOE +CO o.oOOOOE+OO 1600000E+CO o .OOOOOE+OO O.(OOOOE"OO 
a .OOooOE "00 1.00000E"00 0600000E+00 1.000ooE+00 O. OOOOOE +00 

2 O.OOOOOE"OO o .oooooe .. oo 1 • OOOOOE +00 
1 .OOOOOE +00 a .OOOOOE+OO 2 
O.OOOOOE+OO -1.00000E+00 1 .OOOOOE "00 o .OOOOOE +00 a .OOOOOE+OO 

3 a 600000E "00 -) • OOOODE" 00 O. COO ODE +00 
-5.00000E-Ol -8 .~6025E-Ol O.OOOOOE+OO o .OOOOOE+OO -I • OOOOOE "00 
-8.66025E-Ol 5.00000E-OI 3 

0 -5 .OOOOOE -01 -8.66025E-0) O.OOOOOE"OO 
-5.00000E-Ol 8.66025E-Ol -8.66025E-(1 5.((OCOE-Ol o • OOOOOE +00 

8 .66025E -01 5.00000E-Ol O.OOOOOE"OO o .OOOOOE"OO -1.COOOOE"oO 
5 • -5.00000E-Ol 8.66025E-0] -5.00000E-0) -2. BB6 75E -01 8.JM97E-0} 

-8.6b025E-01 -5. OOOOOE -0 1 -2.88675E-Ol -8.33333E-OI - •• 7l'O'E-OI 
6 8.16497E-(J -".11'C"E-OJ 3.33333E-OJ 

-5.00000E-Ol -8.66025E-Ol 5 
8.66025E-Ol -5. OOOOOE -0 1 -5 .OOOOOE -0) 8. f:6025E-0) O.COOOOE+OO 

8.66025E-0) 5.00000E-Ol O.OOOOOE"OO 
O. OOOOOE" 00 O. aooooE. 00 -1.00000E"00 

6 
-5.00000E-Ol 2.ee675E-Ol -8.16,,91E-OJ 

2.88675E-Ol -8.33333E-0) -".7HO"E-Ol 
-8.16497E-0) -4.71"0"E-Ol 3.33333E-Ol 

7 
-I.OOOOOE "00 o .OOOOOE +00 o • {I0000E "00 

O.OOOOOE"CO -3 .?~333E -01 9.~2809E-0] 

o .OOOOOE .00 9.42809E-OI 3.33333E-O] 
8 

-1.00000E "00 o • oooaOE" 00 O.OOOOOE+OO 
o .OOOOOE "00 3.33333E-Ol -9.42809E-Ol 
a .OOOOOE + (C -9.42809E-Ol -3.33333E-0I 

9 
O.OOOOOE+OO 5.17350E-Ol 8.]6"97E-Ol 
5.173 50E -01 -6.66667E-Ol ,,_ 711\04E-Ol 
8.16497E-OI ,+.71"01/tE-01 -3.33333E-01 

10 
o .OOOOOE + 00 -5 .. 11350E-Ol -8.]6,.97E-Ol 

-5.77350E-0} -b.f6667E-01 4.71404£-0] 
-8616497E-Ol ".1}tt0"E-Ol -3.33333E-0) 

II 
-5.00000E-O) 8.66025E-OJ o .OOOOOE +00 
-8.66025 E- CI -5.((000E-Ol o. COOOOE +00 

o .OOOOOE .00 o .OOOOOE"OO 1 • OOOOOE +00 
12 

-5.00000E-0) -8.66025E-Ol 0_ OOOOOE "00 
8 .b6025E- (} -5 .((CCOE -OJ O.OOOOOE+OO 
o .OOOOOE "00 O.OOOOOE"OO 1.COOOOE"00 

TABLE V. Basis Vector Operators and Basis State Vectors. 
512 ) 

FRAME: 1 J .. 1 I'" 1 2 
.. ( 1. OOOOOOOOOE+O 0) (A tA2' .. (-1 .OOOOOOOOOE"OO) r A2A 1) 

I 

FRAME: 2 J::II 1 I ~ 1 2 
.. ( 1.000000000E"00}(AlA2J +( 1.000000000E+OO}(A2At) 

SO) 

FRAME: 1 J'" 1 I .... 1 6 

18 19 20 21 
22 17 • 13 
20 8 18 10 
21 11 12 18 

6 15 14 16 
7 10 15 8 
5 10 10 12 

11 6 2. 3 
15 21 7 19 
16 3 2 6 

" 23 6 4 

• 7 22 2. 
10 2 5 20 

8 20 23 7 
12 22 21 5 
13 5 3 22 

1 20 • 2 
17 • 1. 23 

2 9 16 I 
23 13 8 17 
2' 1 1\ 9 
19 16 17 15 

3 18 13 11 
4 12 I I' 

13 
5 .OOOOOE-Ol 
2.88615E-Ol 

-8.16497E-(1 

I' 
-5.00000E-Ol 
-2.886 75E -01 

8.16497E-01 
15 

5 .OOOOOE-O) 
8 .66025E -01 
O.OOOOOE+OO 

16 
-S.OOOOOE-Ol 
2.886 75E -01 

-8.16497E-Ol 
17 

5.00000E-Ol 
-B.66025E-(l 

o .OOOOOE .00 
18 

5 .OOOOOE -01 
-2.88675E-Ol 

B .J6497E-(J 
19 

5.00000E-0) 
8 .66025E -01 
o .OOOOOE "00 

20 
O.OOOOOE"OO 

-5.77350E-Ol 
-8 .16497E -01 

21 
5 .OOOOOE -01 

-2.88675E-(1 
8.164 97E -01 

22 
5 .OOOODE -01 
2.88675E-0) 

-8 .16"97E -01 
23 

5.00000E-Ol 
-8 .66025E -0) 

o .OOOOOE +00 
20 

O.OOOOOE"OO 
5.17350E-Ol 
8.16497E-Ol 

.. ( 1.00000 OOOOE+O 0 ) U lA2A 3 J .. (" -1.00000000JE "00) fA 2AJA 3} + (-1 .OOOOOOOOOE +00) r A 3A2A 1 ) 
1 2 

"1-I.OOOOOCCOOE+OC}IA1A3A2) .. ( }.00000COOOE"00JU2A3Al) +( 1.000000000E"00)(A3AIA2) 
• 5 
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22 23 24 
18 15 10 
14 17 16 

8 9 17 
9 " \3 

13 12 11 
1\ 16 9 

0 20 
0 5 2 

23 22 7 
20 7 n 

6 1. • 
19 6 23 
21 3 5 

Z 20 6 
7 20 )9 
3 21 22 

24 2 3 
12 13 )8 
16 11 1 
17 H 15 
10 I 12 

1 10 14 
15 18 8 

8.66025E-Ol 
-1.66667E-Ol 

4 61H04E-Ol 

2.eS675E-OI 
8.33333E-Ol 
".71'+04E-Ol 

2.Ee675E-01 
-1.66667E-Ol 
-9. "l2809E -01 

-2.fB615E-01 
B. B333E-Ol 
" .11'ME-01 

-2.f8675E-0) 
-1.~6667E-Ol 

-9.42809E-Ol 

-6.66025E-Ol 
-1.66667E-OJ 

" .114OttE -OJ 

-2.88675£-01 
].66667E-Ol 
9.42809E-Ol 

5 .173 ~OE -01 
6.66667E-Ol 

-It .H40H-01 

8.66025E-01 
1 .~6667E -01 

-4.11"0"E-Ol 

-6.66025E-Ol 
1.66667E-Ol 

-" .lHOH-01 

2.88675E-Ol 
1.66667E-OI 
9.112809E-Ol 

-5.11350E-01 
I) .tl6667E-Ol 

-" .1HOH-Ol 

TABLE III: Decomposition of 
permutations into neighboring 
transpositions. 

SO) 
3 

13Z)l21)13Z) 
4 

1211 (H) (211 (32)1211 
5 

(211 (2111H )r21 )132 r (211 
6 

13 2)(21 )(3211 2 \) 02 I (211132)121 I 

O.OOOOOE"oO 
-9."2809E-OI 
-3.33333E-ol 

-A.IM97E-OI 
".711\OttE-OI 

-3.33333E-01 

-8.)6,,91E-OI 

". 711\0"E -01 
-3.33333E-OI 

8.}6"97E-OI 
~. 71"O"E-ol 

-3.33333E-Ol 

8.16497E-OI 
4.7HO"E-O) 

-3.33333E-Ol 

O.OOOOOE"OO 
-9.42809E-Ol 
-3.33333f-Cll 

8.)6"97E-Ol 
-4. 7140"E -01 

3.33333E-01 

B. J6497E-Ol 
-". 711\0"E -01 
3.33333E-ol 

O. OOOOOE "00 
9. ~2809E-()1 
"3.33333E-OI 

0 .. OOOOOE .00 
9. 42809E -0] 
3.3)333E-Ol 

-8.J6"91E-Ol 
-4. 7140"E -01 
3.33333E-ol 

-8.J6"97E-ol 
-" .1HO"f-ol 
3. 33333E -01 
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Table V continued 

FRAME: 2 J,. 1 I" 1 3 
+( 1.000000000E+OO'UUZ13J +( 1.00000000,e.00)(424143' 

1 
+ (-5.000 OOOOOQE -OU (A3AZA 1 ) 

2 
+ (-5. OOOOOOOOOE-O 1 ) fA 1A3A.Z' *C -'5 .OOOOOOOOOE -0 1) fA 243A J ) +(-5 .QOOCOOOOOE-OlJ CA3A1A2 ) 

5 • 
FR .. ",E: 2 Ja 2 I- 1 :3 
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A character formula is derived for Lie supergroups. The basic technique is that of symmetrization 
and antisymmetrization associated with Young tableaux generalized to supergroups. We rewrite 
the characters of the ordinary Lie groups U(N I, O(N), and Sp(2N) in terms of traces in the 
fundamental representation. It is then shown that by simply replacing traces with supertraces the 
characters of certain representations for UrN 1M) and OSP(N 12M) are obtained. Dimension 
formulas are derived by calculating the characters of a special diagonal supergroup element with 
( + 1) and ( - 1) eigenvalues. Formulas for the eigenvalues of the quadratic Casimir operators are 
given. As applications, the decomposition of a representation into representations of subgroups is 
discussed. Examples are given for the Lie supergroup SU(6/4) which has physical applications as 

a dynamical supersymmetry in nuclei. 

PACS numbers: 02.20.Qs, 02.20.Rt 

I. INTRODUCTION 

So far superalgebras have found some applications in 
physics I in the context of dual models,2 supersymmetric 
field theories, 3 supergravity4 and recently in nuclear physics 
as well.5 There exists extensive papers on superalgebras.6 

The representation theory of super algebras has been studied 
less extensively. Kac has given character and dimension for
mulas for "typical" finite dimensional representations in 
terms of weights. 7 

Lie supergroups are obtained by exponentiating Lie su
peralgebras where the even generators of the superalgebra 
are associated with commuting parameters and the odd gen
erators with anticommuting parameters.6

•
8 In this paper we 

show how certain finite-dimensional representations of Lie 
supergroups can be constructed using a symmetrization
antisymmetrization procedure associated with Young tab
leaux generalized to supergroups. The character and dimen
sion formulas are obtained for these representations which 
include "typical" as well as "nontypical,,7 representations. 

In Sec. II we describe our method and obtain the char
acter and dimension formulas for the representations of 
U(N IM)typesupergroups.Formulaswhichgivethenumber 
of bosonic and fermionic components are also included. 

Our results are formalized in Sec. III. In this section we 
introduce graded "symmetric" functions which are invar
iants of the supergroups U(N 1M) and obtain some relation
ships between them. 

An extension of the above results to the orthosymplec
tic groups OSp(N 12M) is presented in Sec. IV. We show that 
characters of orthogonal and sympletic groups are the limit
ing cases of the characters of orthosympletic supergroups 
given in this paper. 

In Sec. V we describe a technique to calculate the eigen
values of Casimir operators for various representations. The 

alResearch supported in part by the U. S. Department of Energy under 
Contracts Nos. EY-76-C-02-3075 and DE-AC02-76ER03074. 

blWright Nue/ear Structure Laboratory, Yale University. 
ciA. P. Sloan Foundation Fellow. 

quadratic Casimir invariants forSU(N IM),N ¥=M, typesu
per groups are explicitly calculated. 

The decomposition of certain representations of 
UrN / M) into representations of its Lie subgroups is dis
cussed in Sec. VI. As examples, the decompositions of 
SU(6/4) and SU(7/6), which are potentially useful in nuclear 
physics, are worked out. 

The last section contains a brief discussion of our 
results. 

II. CONSTRUCTION OF HIGHER DIMENSIONAL 
REPRESENTATIONS FROM KRONECKER PRODUCTS 

In this section we first review the construction of repre
sentations of U(N), their characters, and their dimensions 
from Kronecker products of the fundamental representa
tion. Next, we generalize this procedure to the supergroups 
UrN / M). Our basic observations in this section will be fur
ther generalized to the supergroups OSp(N 12M I in the com
ing sections. 

It is a well-known fact that the higher dimensional irre
ducible representations ofU(N I-type groups can be obtained 
from the fundamental representations of such groups em
ploying a symmetrization-antisymmetrization procedure. 
A Young tableau is associated with any representation ob
tained in this way as explained in Ref. 9. For a given Young 
tableau one first performs the symmetrization for every row, 
then the antisymmetrization of the columns. Let us consider 
the basis states of any irreducible representation constructed 
as above, i.e., written in terms of tensor products of the basis 
states of the fundamental representation appropriately sym
metrized or antisymmetrized. A transformation on these 
states gives an irreducible representation of the group. By 
taking the trace of this expression we obtain the characters 
for U(N) written in terms of the traces of various powers of 
the fundamental representation as illustrated below. We de
note the character by Xln"n,.n" .. ) where nj is the number of the 
boxes in the ith row of the corresponding tableau. 

To give some simple examples let us consider the basis 
tPa' a = 1, ... , N of the fundamental representation ofU(N). 
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Under the group ¢a transform into ¢ ~ = Uab¢b' where the 
N X N matrix U is a group element in the fundamental repre
sentation. The symmetrized tensor product of two basis vec
tors ¢ ~l)and ¢ ~) is defined as 

A. = A. (I)A. (2) + A. (2)A. (I) 
'I'(ab) 'I' a 'I' b 'I' a 'I' b , (2.1) 

which transforms into 

Since a' and b I are summed over, one can rewrite ¢ lab)' inter
changing a' and b I. Adding these two expressions, we get 

¢ lab) = U(ab ).(a'b ') ¢(a'b ')' 

where 

(2.3) 

U(ab ).(a'b ') = H U aa' Ubb' + U ba' U ab ' ) (2.4) 

is a group element in this irreducible representation. 

To take the trace, we leta = ai, b = b I and sum over a andb. 
We find the character to be 

(2.5) 

For the next example we consider the representation 
associated with the tableau with n I = 2 and n2 = I: 

~ 
The basis ¢(ab,c) of this representation is found by first sym
metrizing with respect to the rows and then antisymmetriz
ing with respect to the columns as follows 

¢(ab.c) = ¢ ~I)¢ ~)¢ ~3) + ¢ ~)¢ ~I)¢ ~3) 

- ¢ ~,)¢ h2)¢ ~I) - ¢ ~)¢ ~I¢ ~II, 

which, under the group, transforms into 

¢ {ab.cI = U(ab,cl,(a'b ',c'I ¢(a'b ',c'I' 

where 

(2.6) 

(2.7) 

- U ca' Ubb' U aC' - U ba' U cb ' U aC,] (2.8) 

is a group element in this representation. Upon taking the 
trace we find the character 

XI2,I,O, ... , = H(TrU)3 - Tr(U 3
)]. (2,9) 

Characters of some low-dimensional representations 
calculated in this way are listed in the Appendix with their 
corresponding tableaux, We see from this list that the char
acters of the representations of type (n, a, a, ... ) correspond
ing to Young tableaux with a single row is given by 

X(n,O.O ... , X n' where 

(TrUr (TrUr - 2 Tr(U 2
) (TrUr - 3 Tr(U 3

) 
X n = --+ -'-----''---- --- + -'--------''----

n! (n - 2)! 2 (n - 3)! 3 

+ ... + Tr(U
n

). (2.10) 
n 

Furthermore, we observe from the Appendix that the char
acter of any representation can be written as follows: 
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Xn, XPl2- 1 ,X"1-2 ", X"N~ N+ I 

Xn l -+ 1 Xn, XrI\- 1 ". XII" N-+ 2 

1:'11, i 2 Xn 1 t-1 Xn, ." Xn",- N+.1 

Xln,.,.",n" ,= (2.11) 

XflN 

where we define X m = I for m = a and X m = a for m < a, 
For example Eq, (2.9) can be rewritten in the form 

X(2,I,O,O, ... ) = IX2 I I. 
X3 XI 

In general the order of the determinant is equal to the num
ber of rows in the Young tableau. These explicit forms are 
potentially useful for physical applications because they are 
given directly in terms of the matrix U. In the next section we 
will show that this form may be derived rigorously from 
Weyl's character formula, 10 which is written in terms of the 
eigenvalues of U rather than the matrix U. 

A more compact form for X n can be derived from Eq. 
(2.10) which may be expressed as 

n I (TrUI)k' 
Xn = I. II kT -1- c5(n - kl - 2k2• .. - nkn), 

k"k" ... ,k" I-I I 

(2.12) 

where as indicated by the delta function the sum is over all 
possible partitions of the integers (kl" .. ,kn ) which satisfy 
n = kl + 2k2 + .. , + nkn • In other words, k/ = a for I> n. 
Therefore, the product over I can also be written from I = I 
to 00. Expressing the delta function in integral form the sum 
over partitions becomes sums over various k/ 's: 

1217 dO . 00 I [(Trul)eifll]k' 
Xn = ---e-mon I - '----'--

o 211' 1~lk,k/! I 

127T dO _. 00 [(TrUI)eiOI ] = - e mO n exp '---'--
° 211' I ~ I I 

f dz -n-\ [~z/(TrUI)] 
= -z exp L ' 

c21Ti /=1 I 
(2,13) 

where c is a contour around the origin, We note that the 
expression (2.13) can be written in two alternative forms: 

Xn =1. dZ,z-n-lexp[Tr 10g(l-zU)J (2,14) 
h21Tl 

or 
1.dz z-n-I 

Xn = h 21Ti det(l-zU)' 
(2.15) 

To find the dimension d(n"n"n" ... ) of any representation 
(n l,n 2 ,n3 ,. .. ), we just calculate the character of the identity 
element in this representation. We let U = IN' where IN is 
theN XNunitmatrix. Then TrU k = N for any powerk. For 
example, the dimensions of the representations considered in 
Eqs. (2.4) and (2.8) are 

d I2,o.D •... ) = !(N2 + N) = !N(N + 1) (2.16a) 

and 

d(2,I,o, .. , = :!(N3 - N) =:!(N - I)N(N + 1). (2. 16b) 

The same can be done for the characters listed in the Appen
dix or the general character ofEq, (2,11). We note that for the 
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single row (completely symmetric) one obtains. 
dln•o.o .... ) = d n • 

d n = N(N + 1)···(N + n - 1)/n!. (2.16c) 

as expected. Therefore. the general dimension formula will 
have the same determinantal form as Eq. (2.11) except for 
X n (U) replaced by dn • Of course. this agrees with the stan
dard result. 

Now we show how the procedure described above gen
eralizes to the supergroups of type SU(N 1M). We have two 
different fundamental representations for supergroups. Let 
the basis for the fundamental representations be SA and tA' 
both of which are graded vectors. We take 

(2.17) 

where the indices A = a (Latin indices) = 1 ..... N denote the 
SU(N) part and A = a (Greek indices) = N + 1 ..... N + M 
denote the SU(M) part. We take<Pa bosonic or a commuting 
wavefunction and tPa fermionic or an anticommuting wave
function. The degree or grade of the index A. g(A ). is defined 
to be 0 for bosonic indices and 1 for fermionic indices. For 
the representation aboveg(a) = 0 andg(a) = 1. The basis for 
the second fundamental representation space is taken as 

(2.18) 

where this time the Latin SU(N) indices denote the odd part 
and the Greek SU(M) indices denote the even part. i.e .• tPa is 
fermionic and <Pa is bosonic. For this representation we have 
g(a) = 1 andg(a) = O. In fact. one can define a tilde operation 
that changes the grade of the indices. I I Under this tilde oper
ation the basis vectors SA and tA transform into each other. 
The tilde operation converts bosons into fermions and vice 
versa. but is not a generator of the SU(N 1M) group. We call 
these basis vectors class I and class II fundamental represen
tations, respectively. In addition to these there are the com
plex conjugate fundamental representations which. of 
course, have the same dimension. 

Under the supergroup SA transforms into 
S ~ = &11 ABSB' where Ol! is an element of the supergroup in 
the fundamental representation. If the matrix element Ol! AB 
has an odd number of fermionic indices. then it is an anti
commuting parameter; otherwise it is a commuting param
eter. In fact the matrix Ol! can be written as 

"k= (
.at 
't' 

fflJ) 
g;' (2.19) 

where the elements of the N XN matrix .if and M XM ma
trix .~ are bosonic and the elements of the N X M matrix &J 
and M X N matrix 'if are fermionic. Under the supergroup 
tA also transforms with the same matrix: Ol!:t ~ = Ol! ABtB' 
We call the bases of the representations obtained by symme
trizing or antisymmetrizing SA and tA as class I and class II 
bases respectively. The lowest dimensional representation of 
the group applied on class I and class II bases is the same: the 
graded matrix Ol!. 

The supertrace is defined as 
Strull = 2) - l)g(A lull AA' (2.20) 

A 
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Following this definition. one writes 

StrOl! = Tr..r:1' - Tr.@ 

for the class I fundamental representation and 

(2.21) 

StrOl! = - Tr..r:1' + Tr.@ (2.22) 

for the class II fundamental representation. The superdeter
minant is defined as 

Sdet&1I = exp[Str(logo/./)]. (2.23) 

For example when &J = 0 = 'if. Sdet0 becomes det..r:1' I 
det.@ or det.@ I det..r:1' depending on class I or class II repre
sentations. For the supergroup SU(N 1M) one has 
Sdet (lJ' = 1. 

The "symmetrized" and "antisymmetrized" tensor 
products of two basis vectors of class I. S ~)and S~) (and also 
of class II. t ~)and t ~)). form bases of irreducible representa
tions for the supergroup SU(N 1M). More generally we form 
the irreducible representations of SU(N 1M) type super
groups using the same algorithm we used for U(N) type 
groups. That is. we associate a Young tableau with each irre
ducible representation and first perform the "symmetriza
tion" of states corresponding to boxes at the same row. then 
"antisymmetrization" of states at the same column. Let us 
first analyze the "symmetrized" tensor product of two basis 
vectors belonging to the same class: 

(2.24) 

which can also we rewritten as 

(2.25) 

where the order of the wavefunctions is changed in the sec
ond term. tIAB) is defined in the same way. We note that, for 
class I. when both indices are purely bosonic. A = a. B = b. 
the product is symmetric sinceg(a) = g(b) = O. On the other 
hand. when both indices are fermionic. A = a. B = (3. the 
product is antisymmetric since g(a) = g(j3) = 1. Thus we 
have 

Sab = <P ~l)<p ~I + <P ~ll<p ~I. 

Saf3 = tP~)tP~) - tP~)tP~l. 

(2.26a) 

(2.26b) 

These products are bosonic. The fermionic components are 
given by 

f: = A. (1).1,12) + .1,ll)A. (2) = f: ':Jaf3 'I' a 'l'f3 'l'f3 'I' a ':Jf3a' (2.26c) 

We see that the number of components of (Sab.Saf3.Saf3) are 
UN(N + 1), !M(M - 1). MN1. respectively. so that the di
mension of SlAB / is !f(N + M f + (N - M)). 

The symmetrization of two class II basis vectors yields 
the tensors 

which are bosonic. and 
;; = A. (1).1,12/ + .I,(I)A. (2/ = ;; 
~ab "Pa'f'b 'f'b'f'a ~ba' 

which is fermionic. The number of components of 

(2.27a) 

(2.27b) 

(2.27c) 

(tab .tab .ta(3) are [!N (N - 1). NM. 4M (M + 1)). respectively. 
so that the dimension of t(AB I is ~[(N + M f + (M - N)]. 
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Under the supergroup SIABI transforms into 

SIABI = °4'AA'S~~&4'BB'S~~ + WAA'S~~&IIBB'S~~' (2,28) 

We note that the order of the factors is important since some 
of the parameters or wavefunctions are fermionic. After 
changing the orders this can be written as 

SlAB) = 011 (AB ),IA 'B 'ISIA 'B 'i' 

where 

&2; IAB),(A 'B') = H( - 1)81A '),fgIB 1 - 81B ')1 02; AA' 02; BB' 
+ ( _ l)KiA )·81B I( _ l)81A ')·fgIA I - glB'11 

X ull BA' u4' AB' 1. 

(2.29) 

(2.30) 

For class II, t(AB I also transforms with the matrix W, but the 
degrees of the indices are interchanged. In arriving at Eq. 
(2.30) we used the following formulas for interchanging the 
orders of bosonic or fermionic quantities: 

S~IS~1 = (- l)81A).gIBIS~IS~I, (2.31) 

(2.32) 

,~ AD &2; CD = ( - 1)II:'IA 1- glB 11·Ig(C)- glD)1 vll CD vll AB' 

(2.33) 

Corresponding to the construction described in the pre
vious paragraph we introduce the Young supertableau 

0Zl 
whose meaning differs from the ordinary tableau: It in
dicates symmetrization of indices for the purely bosonic sub
space, but anti symmetrization of indices for the purely fer
mionic subspace. Both of these possibilities are 
automatically taken into account in Eqs. (2,24), (2,25), (2.28), 
(2.30). To distinguish between two classes, we use white 
boxes for class I and black boxes for class II fundamental 
representations. Just as in the usual case we associate super
tableaux with representations of the supergroup, For class I 
the supertableau is constructed from white boxes only and 
for class II from black boxes only. In this paper we do not 
discuss the representations that would result from taking 
direct products of class I with class II fundamental represen
tations. Accordingly, we will not treat the supertableaux 
containing both white and black boxes. As in the usual case 
we first "symmetrize" the wave functions corresponding to 
each row, then "antisymmetrize" with respect to the col
umns, However, there is a major difference between SU(N)
type groups and SU(N IM)-type supergroups: For SU(N)
type groups Young tableaux can have at most N - 1 rows 
since complete antisymmetrization of more than N indices 
for N bosonic numbers is impossible, On the other hand, for 
SU(N 1M) type super groups, since "antisymmetrization" of 
basis states implies antisymmetrization of bosonic but sym
metrization offermionic parts, one can continue the "anti
symmetrization" process up to infinity. That is, Young su
pertableaux can have any number of rows. We denote a given 
representation by (n "n 2,n,h''')' where n; is the number of the 
boxes in the ith row of the corresponding supertableaux. 

The character, which is an invariant, can now be de
fined as the supertrace of the group element which is applied 
on this basis. For example, for both representations SlAB, and 
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tIAB) discussed above we have 

C}'/' _ "( 1 )glA l( 1 )gIB) '/), 
./1 12,0 .... 1 - ~ - - « lAB I.IAB I 

A.B 

= ![(Str&lI)2 + Str(°4'2)1. (2.34) 

We see that this is formally the same expression as Eq. (2.5) 
for the ordinary Lie groups, except for the fact that traces are 
replaced by supertraces! This is our basic observation, which 
allows us to generalize the character formulas of ordinary 
Lie groups to Lie supergroups. We observe that the meaning 
of the supertrace differs by a ( - ) sign from class I to class II 
representations as in Eqs. (2.22), (2.23). Therefore, the ex
pression for XI2.0.0 .... ) given above yields different results for 
these two representations, since some of the supertraces are 
squared. 

We perform similar calculations for other n:presenta
tions ofU(N 1M) just as we did for U(N). For the representa
tions whose supertableaux are formally the same as the ordi
nary Young tableaux the characters are expressed by the same 
formula except for traces replaced by supertraces. A few such 
examples can be easily worked out and this general result can 
be explicitly verified, as we did for the representations listed 
in the Appendix. We conclude that the character equations 
(2.14), (2,15), for completely symmetric states ofU(N I-type 
groups, is also valid for UrN 1M I-type supergroups if we sub
stitute supertraces for traces. Therefore the character of the 
representation (n,O,O, ... ) associated with the supertableau 
consisting of a single row of n boxes is given by 

.W(n.O.O .... ) =.W n 

(2.35) 

Following the steps of Eqs. {2, 13), (2.14), (2.15), we obtain 

w =j~ z-n-l 

• n r 211'i Sdet( 1 - z&4') 
(2.36) 

which generalizes Eq. (2.15) to the supergroups, Here c/« is 
the supergroup element in the fundamental representation 
and c is a contour around the origin in the complex plane. 
Similarly the character of any representation denoted by 
(n"n 2, .. ) is given by the determinantal form: 

(2.37) 

which is analogous to Eq. (2.11). The order of the above 
determinant is equal to the number of rows in the 
supertableau. 

To conclude this section, we note that the dimension of 
any representation can be found by calculating the character 
of the matrix ./' with matrix elements 

(2.38) 

in this representation. For class I representations f' takes 
the form 

(2.39) 
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and for class II representations it takes the form 

(2.40) 

where IN and 1M are N- and M-dimensional unit matrices. 
Thus when we consider class I [class II] representations 
Str(fk) es equal to (N + M) for odd k and (N - M) 
[(M - N)] for even k. We denote dimensions of class I and 
class II representations by Dln,.n, .... ) andDln,.n, .... ) respectively. 
The dimensions of the representations SlAB) and lIAB) we 
discussed above can easily be calculated from the character 
formulas given in Eqs. (2.36), (2.37) by substituting &2; = f. 
This gives 

D I2 ,Q, ... ) = ![(N + Mf + (N - M)), (2.41) 
- 2 DI2 ,O .... ) = !UN + M) + (M - N)), (2.42) 

which agree with the dimensions we found previously fol
lowing Eqs. (2.26) and (2.27) by counting the number of the 
components of the wavefunctions. Dimensions of the other 
representations are calculated in the same way. In particu
lar, the dimension D n = 3Y n (f) of the class I representa
tion with a single row follows from Eq. (2.36) and the defini
tion of the superdeterminant, Eq. (2,23), as 

D = 1. !£ z ~ n ~ 1 (1 + Z)M 
n r 21Ti (l-zt 

kto(7) C -=-:) 
n 

= L [d(1k)(M)] [dn~dN)], (2.43) 
k~O 

where we have identifieddn ~ k(N) = (n~~Nk ) with the dimen
sion of the symmetric representation of U(N) containing 
n - k boxes in a single row and d

l 
1 k) (M) = (11) as the dim en

sion of the completely antisymmetric representation of U(M) 
containing k boxes in a single column. Similarly, the dimen
sion Dn of the class II representation with a single row is 

Dn = I [dI1,)(N)] [dn~dM)]. (2.44) 
k~O 

The dimension of an arbitrary representation will have the 
form Dln,.n, .... ) = .;yln"n, .... ) (f). For class I representations 
we write 

D -In,.n, ... ·) - (2.45) 

where the order of the determinant is equal to the number of 
the rows in the supertableau. Dln,.n, .... ) is also given by the 
same equation if we exchange Dn's with Dn's. 

Finally we can find the number of fermionic and bo
sonic components of a given representation by calculating 
the characters of the matrix 

of Eq. (2.38) and the unit matrix 

I = (I; I:). 
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We denote the number of bosonic and fermionic components 
of the class I representation (n 1,n2 ,··) by Bln,.n, .... ) and Fln,.n" ... ) 
respectively and those of the class II representation (n 1,n 2,··) 

by ~n"n, .... ) and ~n,.n2'''')' We note that in Eq. (2.43)the terms 
with k = odd (n - k = odd) are associated with fermionic 
components of class I (class II) representations. This obser
vation allows us to identify the total numbers ofbosons and 
fermions by taking the following linear combination of 
characters: 

and 

·;Yln,.n" ... )(I) is obtained from Eq. (2.37), in which we substi
tute ';Yn(I) = (M,;- N)( - l)n as computed from Eq. (2.36). 
These expressions apply to both class I and class II represen
tations except for the meanings of f and the supertrace as 
given in Eqs. (2.39), (2.40), (2.20). As an example, Eqs. (2.46) 
and (2.47) give the number of bosonic and fermionic compo
nents of the class I representation (2, 0, 0, ... ) as 
[!N(N + 1) + !M(M - 1)] and NM, respectively. The same 
result was obtained following Eq. (2.26) by directly counting 
the bosonic and fermionic components of the wavefunction 

SAB' 

III. FORMAL DEVELOPMENTS 

In this section we review the relationship between Eqs. 
(2.11), (2.15) and Weyl's character formula 10 and generalize 
certain concepts to the supergroup case. 

An irreducible representation of U(N) type groups is 
completely determined by its character. Let the eigenvalues 
of the group element U in the fundamental representation by 
E 1, E2, ••• , EN' Weyl's formula gives the character of the repre
sentation (n 1,n 2 , ... ,n N _ 1 ,nN ) as the ratio of two 
determinants 10: 

E7' + N - 1 E;" + N -- 2 E7' 
Enl + N - t €n~ + N - 2 n, 

2 2 E2 

En, -+ N J €~~i + lV -- 2 n .... , 
N EN 

(3.1) 
€:'~ J 

J 
E'( - 2 E? 

~~J ~~2 EO 
2 

EZ~J ~-2 Eo,. 

To consider SU(N) instead ofU(N), we simply take 
nN = O. 

Ifwe interchange E J and E2 in the numerator (which corre
sponds to changing two consecutive rows of the determi
nant) its sign changes. On the other hand interchanging E J 

and E,1 keeps its sign the same: The numerator of the above 

A. B. Balantekin and I. Bars 1153 



                                                                                                                                    

equation is an alternating function. The denominator, which 
is called the Vandermonde's determinant, is also an alternat
ing function. Their ratio is a symmetric function: It remains 
unaltered when any two variables are interchanged. 

One defines 'z the complete homogeneous symmetric 
function of degree n in the arguments Xi' i = 1, ... ,N, as the 
sum of the products of the variables Xi' taking n of them at a 
time. It is denoted by hn . The sum ofthe products of the same 
variables again taking n of them at a time, but this time with
out repetition of any Xi in a product, is called the elementary 
symmetric function in the arguments Xi' i = 1, ... ,N, and is 
denoted by an' The following are some examples for three 
variables X I'XZ'X3 : 

al(x) = h,(x) = XI + Xl + X3 , 

az(x) = X IX2 + X IX3 + X2X3' 

a3(x) = XIXZX3' 

hz(x) = xi + x~ + x~ + XIX Z + XIX) + XZx 3, 

h)(x) = Ix: + Ix;xk + x,XZx 3• 

i i.k 

We note that an = 0 if n < N. One writes a generating func
tion for the elementary symmetric functions as 

N 

f(z,x) = II (1 - xiz) = I( - 1 ran (x)zn (3.2) 
i= 1 

and for the complete homogeneous symmetric functions as 

N 1 
F(z,x) = II = Ihn(x)zn. 

i ~ I (1 - xiz) n 

(3.3) 

One defines ho = ao = 1 and hn = an = ° for n < 0. Multi
plying Eqs. (3.2) and (3.3), one gets the following relations: 

hoak -h,ak_, +hZak _2 _ ... +(-I)khkoO =O, 

hC,ok_' - h,ak_ Z + ... + (- l)k-'hk_,ao = 0, (3.4) 

hoa, - h,ao = 0, 

which are called Wronski's relations. We can consider (3.4) 
as a set of k equations with k unknowns ak , Ok _ " ... ,00 and 
coefficients ho, - h" ... ,( - Ij1hj , .... Solving for Ok' one finds 
the determinant 

h, hz hk 

ho h, hk_, 

° ho hk - 2 

ak = (3.5) 

° ° .. ho h, 
Reversing the roles of Ok and hk' we can also write 

(3.6) 

o ° .. 0 0 a, 
Now let us write down the character, X m' of the repre

sentation (m,O, ... ,O) corresponding to the Young tableau 
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with a single row of m boxes. We recall that the general 
character formulas in the previous section were based on this 
representation. We now try to relate that form to Weyl's 
character formula. From Weyl's formula we can write 

E';'+N-' ~-2 1 I 
E,{,+N-' E'i- 2 

(3.7) 

Xm = -----------------------

where L1 (E" Ez, ... , EN) denotes the Vandermonde's determi
nant in the arguments E I , Ez, ... , EN' After some algebra '3 one 
finds that Xm is equal to the symmetric function hm (E): 

N N 

Xm =hm(E)= I E7'+ I E,;,-I Ek +"·+E,Ez· .. EN· 
i-= 1 i.k = 1 

(3.8) 

Similarly the character of any representation can be written 
as a single determinant (rather than a ratio) by manipulating 
the properties of determinants. Then it follows that Weyl's 
formula reduces to '4.15 

hn, hill -- I hn" - Nt' 

hll' +' hn, hll" N+2 
(3.9) X(n"n"'--I = 

hll' +N-I hnl + N 2 hn, 

This is the form we noted in Sec. II on the basis of the exam
ples in the Appendix which were arrived at by the method of 
symmetrization and antisymmetrization, and therefore it 
must also apply generally to supergroups, as we have shown 
in the previous section. There remains to make contact be
tween the formulas for Xm of the present section (3.8), (3.9), 
which are written in terms of eigenvalues E" with the formu
las of the previous section (2.11), (2.15) written in terms ofthe 
group element U. This is achieved through the generating 
function F(Z,E) ofEq. (3.3) if we identify Ei with the eigenval
ues of U and write 

Nil 
F(z,E) = II = . 

i~t{I-zE,) det(l-zU) 
(3.10) 

On the other hand, hn (E) is the nth term of the Taylor expan
sion of F(Z,E): 

(3.11 ) 

Using Cauchy's theorem and substituting F(Z,E) from Eq. 
(3.10), this result is equivalent to 

h (E) = _1_ 1. ~ 1 , 
n 21Titzn +'det(I-zU) 

(3.12) 

which is the form we noted in Sec. II, Eq. (2.15). 
Finally we want to point out that Eq. (3.9) gives the 

character of the representation (1, 1, ... , 1) = (1 k), associated 
with the tableau with a single column of k boxes, as 
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hk _ I hk - 2 

o 
o 

hk hk _ 1 hI 

(3.13) 

which is equivalent to ade) by Eq. (3.5): 

XII') =ade) (3.14) 

In the second part of this section we develop a formal
ism for the class ofrepresentationsofU(N 1M) type super
groups defined by Eqs. (2.17) and (2.18). The diagonalized 
form of the supergroup element ~ is 

( sY" ) 
u&, = 0 ;" (3.15) 

where sY" and fj)' are diagonal N XN andM XMmatrices, 
respectively. We denote the eigenvalues of sY" by ej. i = 1, 
... ,N, and those of fj)' by A'j>j = 1, ... ,M. We introduce the 
graded homogeneous symmetric function of degree n in the 
arguments el,. .. ,eN; AU"',).,M as 

H (e,).,)=i~ z-n-I 

n r21TiSdet(I-z~' 

£ dz II]'!" 1(1 - AjZ) 
- (3.16) 
- c 21Tizn + I II;"= 1(1 - ejZ) , 

where c is a contour around the origin. This is the class I 
character corresponding to the representation with a single 
row in a supertableau as was given in the previous section. 
From this definition we can write the generating function for 
graded homogeneous symmetric functions as 

lIM 1(1 - ;"'z) 
G(z;e,).,) = J= J = IHn(e,)., )zn. (3.17) 

II;"= 1(1 - EjZ) n 

Another set of invariant functions, denoted by An(e,).,), can 
be introduced as in Eq. (3.2) by the generating function 
g(ze')") = Sdet(I -z~'). 

II N
I (I-ez) 

g(Z;E,A) = ~= I = I( - ItA.(E,)., )zn. (3.18) 
IIj = I (1 - AjZ) n 

Clearly we should define Hn = 0 = An for n < 0 and 
Ho = 1 = Ao. Since their generating functions are inverses 
of each other, Hn (e,)., ) and An (e,)., ) also satisfy Wronski's 
relations. Therefore, following the same procedure which 
leads to Eqs. (3.5) and (3.6), we can express An as an n X n 
determinant 

(3.19) 

where we have shown the (ij)th element of the n X n matrix 
whose determinant is calculated. Recalling that Hn is the 
character of the representation with a single row supertab
leau and that the character of any representation is given by 

·5V'ln,.n, .... ) = det(Hn, _ i +j), (3.20) 

as in Eq. (2.37), we note that An must be identified with the 
character corresponding to the single column supertableau 
An = '~/'II"" Similarly Hn can be written as a n X n determi
nant in terms of the A k 's 

(3.21) 
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A second relation can be established between Hn (e,A ) 
andAn(e,)., ) by observing in Eqs. (3.17), (3.18) that the gener
ating functions G (z;e,)., ) andg(z;e,A ) transform into each oth
er by interchanging (Aj)'S with (ei )'s. However, this is just the 
tilde operation discussed in the last section which relates the 
superdeterminants in class I and class II representations as 
inverses of each other. Therefore, ( - I)"An(e,).,) is simply 
%In.o,O .... ) for class II while Hn (e,)., ) is %In,O.o .... ) for class I 
representations. We have now found the following relations 
among them: 

(3.22) 

which follows from the interchange of A 's with e's. 
Just as in the ordinary Lie algebra case, we see from the 

general character formula and Eq. (3.19) that An (e,)., ) is just 
the class I character of the completely "antisymmetric" re
presentation with n indices corresponding to a single column 
of white boxes. However, we have also just realized that 
( - I)"An(E,).,) is the class II character of the completely 
symmetric representation with n indices corresponding to a 
single row of black boxes. These two representations are re
lated to each other by the tilde operation plus interchanging , 
"symmetrization" with "antisymmetrization". From the 
general character formulas we now obtain the following re
sult: Representations which are related to each other by the 
tilde operation (conversion ofbosons+---*fermions) in the 
graded Hibert space plus the interchange of "symmetriza
tion" and "antisymmetrization," have identical characters 
which differ at most by a ( - ) sign. 

Finally we note the nontrival relation which follows via 
Eqs. (3.20), (3.22): 

(3.23) 

where the A 's and e's are interchanged in the arguments of 
the H's on opposite sides of the equations. A similar relation 
holds for the An's. 

IV. EXTENSION TO ORTHOSYMPLECTIC 
SUPERGROUPS 

In the first part of this section we will briefly review the 
character and dimension formulas 10 for the representations 
ofO(2N)-, O(2N + 1)-, and Sp(2N)-type Lie groups. The re
presentations of these groups are labeled by a partition into 
Nparts: I n l ,n2,· .. n N }. wheren l >n2 > ... >nN>O. One can re
write this partition defining ( = n i + N - i so that 
II> 12 > .. .IN >0. 

For the O(2N) type groups the character ofthe irreduci
ble representation corresponding to the partition 
{n l,n2, ... nN} is given by lo.15 

h~, + h~, 
=! h~, + I + h ~, _ I 

h ~, _ I + h ~, _ I 

h~, + h~, _ 2 

(4.1) 

where h;" = h m - h m _ 2' Just as in the UrN) case we can 
associate a tableau with at most N rows (not 2N rows) with 
this representation of O(2N): 
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Note that the dimension of the determinant reduces to the 
number of nontrivial rows in the Young tableau if we take 
into account that ho = 1 and hn = ° for n = negative inte
ger. The complete homogeneous symmetric function hn can 
again be expressed as 

hn(S) = 1. ~ z-n-I , r 21ri det(1 - zS) 
(4.2) 

where the matrix S is the fundamental representation of 
O(2N) and c is a contour around the origin. The dimension of 
the representation {n l ,n2 , ••• ,nN = o} is 

2N-I.J (/2) 
d{n,.n, ..... nN ,.o} = (2N _ 2)! (2N _ 4)! ... 2!' (4.3) 

where.J (/2) is the Vandermonde determinant in the argu
ments 1/,//, ... , I~. The dimension of the representation 
{n l ,n2 , .. ·,n N #o} is 

2N.J (/2) 
d{n"n" ,nN""o} = (2N _ 2)! (2N'- 4)! ... 2! (4.4) 

Equations (4.3) and (4.4) are obtained by calculating the 
character of the matrix I: 

d{n,.n, ..... nN } = X{n,.n, .... nN}(I). 

For nN = 0, the irreducible representation ofO(2N) 
whose character is given in Eq. (4.1) is also an irreducible 
representation ofSO(2N). But for the case nN #0 this repre
sentation is reducible. It splits into two irreducible represen
tations ofSO(2N) with the characters 

X{I,;,.n,. .nN""O} = ! [det(h ~J - i - j + 2 + h ~J + i - j 

+aiNdet(hn,_i+j_1 +hn,-i-HI)]. 
(4.5a) 

xfL, . . n,#O} = ![det(h ~j-i-j+2 + h ~j+i-j) 
-aiNdet(hn,_i+j_1 +hn,-i-J+I)], 

(4.5b) 

where a can be expressed as 

a = [det(ST _S)]112 

and S is the fundamental representation of SO(2N). The di
mensions of these two representations are the same and giv
en by Eq. (4.3). 

For the O(2N + 1 I-type groups one also associates irre
ducible representations with the partitions {n l ,n2 , ... ,nN }. 

The character of {n l,n2, ... nN} is given by 

X{n,.n, ..... nN } = !det(h ~J - i -j+ 2 + h ~J + i -j)' (4.6) 

The dimension of this representation is again found by calcu
lating the character of the unit matrix. One obtains 

.J (I )I1i<J(lj + Ij + 1) 
d{ }= , (4.7) 

n,.n, •..• nN (2N _ I)! (2N - 3)! .. ·3! l! 

where.J (/) is the Vandermonde determinant in the argu
ments II , ... ,IN' 

Now let us make contact with the above well-known 
results by employing the symmetrization-antisymmetriza-
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tion technique. This procedure will teach us how to general
ize the character and dimension formulas to the supergroups 
OSP(N 12M). The symmetrized tensor product of two funda
mental (vector) representations ofO(2N) or O(2N + 1) may 
be written as 

ifJ(ab) = ifJ ~1) ifJ~) + ifJ ~I ifJ ~II. (4.8) 

Unlike the U(N) case ifJ(ab) does not form an irreducible re
presentation. Since the Kronecker delta function Oab is an 
invariant the orthogonal group, the irreducible basis Kab can 
be chosen by imposing the invariant condition OabKab = 0. 
Therefore, K ab can be expressed as 

K(ab) = ifJ(ab) - (oabIM)ocdifJ(Cdl (43) 

for O(M) where M = 2N or 2N + 1. In other words the re
ducible basis ifJ(ab) is split into two irreducible bases: K(ab) and 
the singlet ocdifJ(cd)' Under the O(M) group, M odd or even, 
K(ab) transforms into 

K(ab)~[ U(abl.(a·b·) - fJ ab fja'b./M ]Kla'b'l' (4.10) 

where U lab I.(a'b ') is as given in Eq. (2.4). As in Sec. II the 
character of this representation is then h2 - 1 = h2 - ho-
Extending the above argument, one shows that the symme~ 
trized tensor product of m-basis vectors is split into irreduci
ble representations in a similar way. The characters of these 
irreducible representations are given by h ;" = h m - hm _ 2' 

h;" _ 2 = hm _ 2 - hm _4,· .. ,h l or ho. From Eqs. (4.1) and 
(4.2) one observes that these are the characters of the repre
sentations ! m,O,O, .. · J, ! m - 2,0, ... ), etc. corresponding to 
single row tableaux for O(M). 

The antisymmetrized tensor product 
ifJ(a.b) = ifJ ~I) ifJ ~I - ifJ~) ifJ ~II form the basis of an irreducible 
representation ofO(M) since oabifJ(a.b) = O. As a matter of 
fact Eq. (4.1) gives the character of the representation 
{l,l, ... ,np = l,np + 1 = O, ... ,o} as apXp determinant: 

X{I ..... np = I.n e , 1 = o, .... o} 

= ~det(h ; _ i _ j + h ; + i __ J) = det(h I + i- j), (4.11) 

which is equal to ap by Eq. (3.5) which is the character of the 
representation ofGI(N) or U(N) obtained by antisymmetriz
ingp basis vectors. Hence completely antisymmetrized ten
sor products of the fundamental representation form irredu
cible representations of O(M). 

For Sp(2N) type groups the character of the irreducible 
representation corresponding to the partition {n l,n2, .. ·,n N} 
is 10 

Xlln,.n, .. n,11 = ~det(hni+i-J + hn,-i-J+2)' (4.12) 

The dimension of this representation can again be found by 
calculating the character of identity matrix. These formulas 
can again be related to the symmetrization-antisymmetriza
tion procedure. They can be shown to be intimately connect
ed to the O(2N) case by interchanging the roles of symmetri
zation with antisymmetrization and by taking Cab' the 
invariant antisymmetric tensor of Sp(2N), instead of the fj ab 

ofO(2N). Note that 

C=( 0 
-IN 

where IN is the identity matrix in N dimensions. 
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Now we can generalize the above results to the 
OSP(N 12M i-type supergroups. We denote the basis for the 
fundamental representation by ~A which contains Nbosons 
and 2M fermions. Under the supergroup ~ A transforms into 
~ ~ = J/ AB ~ B' where J/ is the element of the supergroup 
OSP(N 12M) in the (N + 2M i-dimensional fundamental re
presentation. Since the ordinary matrix transposition 
(J/ ,J/ l)T is not equal to J/i J/i when one has fermionic 
matrix elements, we define the supertransposition by inter
changing the order offermions according to Eq. (2.32): 
~A = J/ AB~B = ~B(J/ST)BA' Here J/ST is given by 
(J/ST)BA = ( - 1)8\B)[8\A I ~ 8\BIJJ/ AB and satisfies the 
equation 

(J/,J/2)ST =J/~TJ/~T. (4.13) 

For OSP(N 12M i-type supergroups the group element J/ 
should obey the relation6

•
7 

J/STHJ/ = H, J/HJ/ST = HST, 

where 

H=(I; ~) 
with 

c= ( ° 
-1M 

1M) ° . 
We note that 

H2 = (1; 
- ~2M). HH sT = (1; 

(4.14) 

(4.15) 

(4.16) 

I~M). (4.17) 

The "symmetrized" tensor product of two basis vectors ~ ~I 
and ~ ~I is reducible. Since HAB is an invariant of the 
OSP(N 12M i-type supergroups, the irreducible basis ~IAB I 
should satisfy the condition HAB~IABI = 0. We then write 

~IABI = t:ABI - [(HST)AB/(N - 2M)]HcDt:CDI' (4.18) 

where 

t: _ 1"1111"121 + 1"1211"1'1 
~IABI - ~ A ~ B ~ A ~ B' 

Using the relation 

HAB = ( - l)giA IHBA , 

(4.19) 

(4:20) 

one easily shows that ~IAB I given above satisfies our condi
tion. Under the supergroup ~IABI transforms into 

S lAB I = [J/ IAB I.IA 'B 'I 

where 

J/IABI,IA 'B'I = H( - 1)8\A '1,[giBI ~giB'IJJ/ AA ,J/ BB' 
+ ( _ 1 )glA l,gjB I( _ 1 )gjA 'I, [gjA I ~ glB 'II 

X'~BA"dAB'], (4.22) 

as for the U(N 12M) group. The character ofthis representa
tion is H2 - 1 = H2 - Ho, where 

H =J.~ z~n~1 

n Yc 21Ti Sdet( 1 - z,d) , 
(4.23) 

as defined by Eq. (3.16). Similarly the "symmetrized" tensor 
product of m basis vectors is split into irreducible representa-
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tions whose characters are given by H m - H m ~ 2 = H;", 
Hm~2 - Hm ~4 = H;"~2,· .. ,H, or Ho· This is a direct gen
eralization of the orthogonal group characters to the ortho
symplectic group. Note that the generalization consists offor
mally replacing traces or determinants by supertraces or 
superdeterminan ts. 

On the other hand the "antisymmetrized" tensor prod
uct of two basis vectors 

(4.24) 

is the basis of an irreducible representation since it automati
cally satisfies the condition HAB~IA.B) = 0. In general the 
completely antisymmetrized tensor product of n basis vec
tors form an irreducible representation whose character is 
the n-dimensional determinant det(H, ~ i + j)' 

Having observed these close correspondences (trace
_supertrace) between the simplest characters of the orthog
onal groups and the orthosymplectic supergroups, we con
clude that the character of the irreducible representation of 
the OSP(N 12M) type groups corresponding to the partition 
In "n 2, ... l must be given by 

%{n"n,.} = !det(H ~J+ i~j + H ~j~j~ i+ 2)' (4.25) 

whereH;" = Hm - Hm~2' 

The dimension of this representation, D {n,.n"",}, is 
found by calculating the character of the matrix /' defined 
in Eq. (2.39). We get 

D fn.,n,.",} = ~det(D ~j + i ~ j + D ~j ~ j ~ i + 2)' 

where D ~ =Dn - Dn ~ 2' Dn is given by Eq. (2.43). 
The character formula (4,25) for OSP(N 12M i-type su

pergroups should reduce to the character formulas of O(N) 
and Sp(2M) type groups in limiting cases. Let us note some of 
these limits and check the consistency of our equations. The 
fundamental representation of the O(N) subgroup has a bo
sonic basis and the Sp(2M) subgroup has a fermionic basis. 
The matrix J/ can be written as 

(4,26) 

where the matrix elements of ,r;ff and fiJ are bosonic and 
those of ,Uj) and C(5 are fermionic. The diagonalized form of 
J/ is 

The "symmetrized" representation I m,O, ... ,Ol of 
OSP(N 12M) should reduce to the representation 

(4.27) 

((I,I, ... ,nm = 1, nm + I = 0, ... ,0)) ofSp(2M) when the matri· 
ces ,0/, fjJ, C(5 are zero and fiJ is nonzero. This amounts to 
the eigenvalues Ei , i = 1, ... ,N, of ,r;ff' all being zero and the 
eigenvalues Aj , j = 1, ... , 2M, of g)' being nonzero. In this 
case the character of the representation! m,O, ... ,O l reduces 
to (in the notation of Sec. II) 

(4.28) 

which is equal to + [am (A) - am ~ 2 (A)] by Eqs. (3,16) and 
(3.17), On the other hand, Eq. (4.12) gives the character of the 
representation ((I,I, ... ,nm = l,n m + 1 = 0, ... 0))ofSp(2M) as 
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the m X m determinant 

~det [ h 3 _ ; _ j (A ) + hI +; _ j (A )]. 

hI h2 h3 ho hI h3 
ho hI hz 0 ho hz 
0 ho hI 0 0 hI 

(4.29) 

which is again equal to am (A ) - am _ z (A ) by Eq. (3.5). Hence 
the representation I m,O, .. J of OSP(N 12M) reduces to the 
representation ((I, ... ,nm = 1, nm + I = 0, ... ,0)) ofSp(2M) in 
this limit. We also expect the completely "antisymmetrized" 
representationll,I, ... ,nm = I,n m + 1= O,··JofOSP(N 12M) 
to reduce to the representation ((m,O, ... )) ofSp(2M) in the 
same limit. For bSP(N,2M) we have 

,;V _ _ 
{1,1.···'"m- 1. "on. I-D .... } 

= !det(H 3 _ ; _ j + H ; + ; _ j) = Am 

by Eq. (3.19) and 

Am(O"i) = hm(A) (- l)m 

(4.30) 

(4.31) 

by Eq. (3.18). For Sp(2M) one getSX{{m.D ... D)) = hm(A) by Eq. 
(4.12). Thus, our results are consistent also for this case, as it 
should have been. The extra minus sign comes from the exis
tence of an odd number of fermions. 

The discussion given above for the class I representa
tions can easily be extended to the class II representations by 
applying a tilde operation. 

V. CALCULATION OF CASIMIR INVARIANTS 

Using the character formulas given in the previous sec
tions, one can calculate the Casimir invariants for the var
ious representations of supergroups. Before discussing su
pergroups we will develop some techniques for SU(N) type 
groups as a warm-up excercise. 

For SU(N) groups the Killing metric can be taken pro
portionalto 1. We take it as8ij' If Rab(X;), i = 1,2, ... ,N z - 1, 
is the representation of the generator X" then the value of the 
Casimir operator Cz(R ) in the representation R is given by 

Rab(X;)Rbe(Xj)8i} = Cz(R )8ae · (5.1) 

Setting a = c and summing, one arrives at 

d(R )C2(R) = Tr[R (X;)R (X;)], (5.2) 

where d (R ) is the dimension of the representation R. Let us 
relate this equation to the character of the representation. 
Since any group element can be written as g = exp(O ;X;), we 
can write 

8ij[R (X;)R (Xj)]ah =8ij[~Rab(g)] , (5.3) 
ao'aoJ e~o 

where R (g) is the representation of g. Setting a = b and sum
ming yields 

d(R)C'(R)=tJij[~XR(g)]. (5.4) 
- ao'aoJ Ii~O 

We apply this result to the character of the representa
tion (n,O, ... ,O). Using Eq. (2.15) for this character, we para
metrize g = U = exp(O;A ;/2) in the fundamental represen
tation and take the derivatives as indicated in Eq. (5.4). Then 
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we obtain the quadratic Casimir invariant Cz N (n) for this 
completely symmetric representation as 

d CzN(n)=~~ Z-,,-I 

" j 21Ti (I - zt 

[ 
z ZZ] [ (A; Aj)] .. X --+ Tr -- 81) 

1 - z (1 - Z)2 2 2 . 
(5.5) 

From Eq. (5.4) we see that 

Tr(A; A; )8iJ = N C/"(I), 

where Cz N (1) is the quadratic Casimir invariant in the funda
mental representation. The Killing form can be related to the 
normalization condition 

TrA;Aj = 2tJij' 

This yields 

C/(I) = (N 2 
- I)/2N. (5.6) 

Substituting Eq. (5.6) into Eq. (5.5), one obtains 

dCN(n)=N-I(N+n)! (5.7) 
" 2 2N! (n - I)!' 

which gives via Eq. (2.16c) 

C/(n) = n(N - 1) (N + n)/2N. (5.8) 

Similarly from Eqs. (2.11) and (5.4) one finds the qua

dratic Casimir invariant C/' (n I,nz,···), for the representation 
(n p n2 , .. ·,n N _ I) to be 

d",Cz(n l ) d",_1 

d(n,.n" ... )C2
N

(n l ,nZ'··) = d"l + I Cz(n l + 1) dn 

d" d n , _ 1 C2(n Z - 1) 

+ dll , + 1 d", Cz(nz) + ... , (5.9) 

where we need to sum over as many terms as the rank of the 
determinant, which is equal to the number of nontrivial rows 
in the Young tableau. 

We will use the same method to write down the Casimir 
invariants of the supergroups explicitly. A supergroup ele
ment g can be written as 

(5.10) 

where X A are the elements of the corresponding Lie superal
gebra and the parameters 8 A are bosonic [for g(A ) = 0] or 
fermionic [for g(A ) = 1]. Let us represent the generators X A 

by the matrices (AA /2) in the fundamental representation. 
Then the Killing form metric (gAB) 16 can again be related to 
the normalization of these matrices via the supertrace 

2gAB = StrAAA B • (5.11) 

Note that Str A A = 0 for all A. The metric gAB is not 
symmetric: 

gAil = (- l)gIAI·gIBlgBA · (5.12) 

One defines the contravariant metric ~II via the relation 

(5.13) 

The quadratic Casimir operator Cz(R ), in the represen-
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tation R, is given as 

(5.14) 

According to the generalization of Schur lemma C2(R ) is 
proportional to the unity only for the representations where 
the dimension of the bosonic subspace is different than the 
dimension of the fermionic sUbspace6

: 

[C2(R )lrs = C2(R )Drs · 

For such representations we can take the supertrace and 
write 

Str[R (l)]C2(R) = gA°Str[R (XA)R (Xo)], (5.15) 

where R (I) is the representation and Str[R (I)] = % R (I) is 
the character of the identity element. Therefore, for 
SU(N 1M) type supergroups withN =1M, in the fundamental 
representation this equation reads 

(N _ M)C2
N ,M(I) =gABStr( Ii; Ii;) 

(5.16) 

where N - M is the supertrace of the identity element in the 
fundamental representation of class I. Using Eq. (5.12), the 
above expression takes the form 

(5.17) 

where LaD~ and LaD~ are the number of bosonic and fer
mionic generators, respectively: 

(5.18a) 

ID~ = 2MN. (5.18b) 

Substituting Eq. (5.18) into Eq. (5.17), we get the quadratic 
Casimir invariant C2 N - M (I) in the fundamental representa
tion as 

C2
N

•
M (I) = (N -M -1)(N -M + 1)12(N -M). 

(5.19) 

We see, in fact, that for N = M we must take a different 
approach, in accordance with the generalized Schur's 
lemma.f> 

From Eqs. (2.46) and (2.47) we observe that %(n,.n, .... ) (I) 
is the difference of the dimensions of the bosonic and fer
mionic subspaces of the representation R = (n "n z,")' If this 
difference is nonzero, we can write the quadratic Casimir 
invariant, C2 N,M (R ), of such representations as 

.5V'ln,.n, .... ) (I )C2 N.M (R ) 

= gABStr[R (XA)R (Xo)], (5.20) 

where R (XA ) is the representation of the generator XA • In 
analogy to Eq. (5.4), we obtain in the case of super groups 

.5V1n .. n, •... ) (I)C2
N

•
M (R ) 

(5.21) 

Let us apply this equation to the calculation of the qua
dratic Casimir invariant C2 N.M (n) of the representation 
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(n,O, ... ,O) ofSU(N 1M). Using Eq. (2.36) and following the 
same steps leading to Eq. (5.5) we obtain 

%n(l)C2
N

•
M (n) = (N - M)C2

N
•
M (I) 

f dz (1 - Z)M - N ( Z Z2) 
X - --+ . 

217"i zn+' 1 -z (1 -zf 
(5.22) 

Substituting Eq. (5.19) into Eq. (5.22), one gets 

CZ N.M (n) = n(N - M - I)(N - M + n)/2(N - M). (5.23) 

Similarly from Eqs. (2.37) and (5.21) the quadratic Casi
mir invariant C2

N
,M (n"n z,") for the representation (n"n 2, .. ) 

with %(n"n" ... )(I)=lO can be found as 

%(n,.n2 .... ) (I )C2 N.M (n "n 2, .. ) 

%n,(/)C2
N

•
M (n,) 

%n,(/) %n2_,(/)Cz
N

•
M (n 2 - 1) 

+ %n,+,(I) %n,(I)C2
N

•
M (n 2 ) + ... , 

(5.24) 

where again we need to sum over as many terms as there are 
nontrivial rows in the supertableau. 

Higher order Casimir invariants can be clearly con
structed by a straightforward extension of the methods pre
sented in this section by taking higher derivatives. 

Eigenvalues of Casimir operators have been calculated 
in Ref. 6c in terms of the highest weights for typical 
representations. 

VI. DECOMPOSITION OF SOME REPRESENTATIONS 
OFU(N/M) 

In this section we will give examples of various branch
ings of U(N 1M) type supergroups into some smaller sub
groups which are potentially useful for physical applica
tions. Completely "symmetric" class I representations of 
such supergroups are used in nuclear physics as discussed 
elsewhere.s 

Let us define the symbol (n] for the class I representa
tion (n,O,O,··) ofSU(N/M), whose basis is a graded "symmet
ric" tensor with n indices. We are interested in decomposing 
this representation into tensor product representations of 
the subgroup SU(N) X SU(M): 

SU(N IMPSU(N)XSU(M). 

For notational purposes we define (n) as the representation 
(n,O,O, ... ,O) ofSU(N) whose basis is asymmetric tensor with n 
indices and [m] as the representation (1,1, ... ,1,0,0 .. ·0) of 
SU(M) whose basis is an antisymmetric tensor with m indi
ces. Then, from Eq. (2.43) it follows that (n] decomposes into 
the following representations of SU(N) X SU(M): 

(n] = I al ((n - m),[m]). 
m 

For SU(6/4) which is a supergroup of interest this takes the 
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form 
(n] = «(n),[O]) Ell «(n -1),[1]) Ell «(n - 2),[2]) 

Ell «(n - 3),[3]) Ell «(n -4),[4]). 

For this group we wish to further decompose the representa
tion according to the following chain of subgroups. 

SU(6/4):::>SU(6) X SU(4):::>SO(6) X SU(4):::>Spin6. 

For this purpose we define [n] as the representation 
[n,O,O, ... ,O] ofSO(N) whose basis is a symmetric traceless 
tensor with n indices. Then we can write 

((n - m),[m]) = I Ell ({n - m - 2/},[m) 
I 

= ({n - m},[m]) + ({n - m - 2},[m]) 

+ ... + ({O or l},[m]). 

To proceed further, we use the isomorphism ofSO(6) ~ SU(4) 
to write each symmetric SOt 6) representation [n ] in terms of 
SU(4) notation by replacing an SO(6) index by an antisymme
tric pair ofSU(4) indices. Then the SO(6) representation [n I 
transforms under SU(4) as (n,n,O). The decomposition to the 
diagonal SU(4) = Spin6 contained in SO(6) X SU(4) can now 
be given as follows: 

({n - ° - 2/},[O) = (n - 2/,n - 2/,0), 

({n - 1 - 2/}, [ 1]) = (n - 2/,n - 21 - 1,0) 

+ (n - 2/- l,n - 2/- 1,1), 

({n - 2 - 2/},[2) = (n - 2/- l,n - 2/- 1,0) 

+ (n - 2/- l,n - 2/- 2,1) 

+ (n - 2/ - 3,n - 21 - 3,0), 

({n - 3 - 2/}, [3) ) = (n - 21 - 2,n - 2/ - 2,1) 

+ (n - 21 - 3,n - 21 - 4,0), 

({n - 4 - 2/}, [4]) = (n - 21 - 4,n - 21 - 4,0). 

Another potentially useful supergroup chain is 

SU(7/6):::>SU(3/2):::>SU(3)xSU(2). 

Again we are interested in the completely "symmetric" re
presentation (n,O, ,0···) ofSU(7/6). For this purpose it is use
ful to note that the class I fundamental representation 
(1,0,0,···) ofSU(7/6) transforms as the (2,0,0,···) "symmetric" 
representation ofSU(3/2). This observation leads to the fol
lowing formula: 

where the sum is over all partitions which satisfy 

(n I + n2 + ... + n, + ... ) = n. 

and n l /n 2/···/n,/···/0. 
Similar decompositions can be found in Ref. 7 using the 

method of highest weights. 

VII. DISCUSSION 

We have studied some aspects of the representation the
ory of supergroups in a form which is suitable for physical 
applications. Our work is closely related to the fact that as 
we generalize from the Lie groups to the supergroups, traces 
and determinants appearing in the invariants of the theory 
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are changed into supertraces and superdeterminants. In this 
way we have obtained characters, dimensions, and Casimir 
invariants of S0me representations. The same method is pos
sibly useful for studying other properties of supergroups 
starting from the known results of the Lie group theory. 

We have investigated only certain finite-dimensional 
representations of UrN / M)- and OSP(N 12M i-type super
groups, namely those which can be obtained by taking the 
Kronecker products of either class I or class II representa
tions. The tensor products of class I with class II basis vec
tors also form the basis of new representations which are, in 
general, reducible. In this paper we have not studied such 
representations. We have deferred these and direct products 
with complex conjugate representations to a forthcoming 
paper now in preparation. 

We note that class I and class II representations are not 
completely independent. They are related to each other by a 
tilde operation (which interchanges bosons and fermions) or 
equivalently by the conjugation of the supertableaux. This 
fact enables us to derive some nontrivial relations among the 
invariants of the supergroups such as Eq. (3.23). We empha
size that while the representation of the group elementg is 
identical on certain class I and class II representations, the 
basis vectors (states) are quite different in the boson-fermion 
content. This can already be seen for the fundamental repre
sentations SA and tA in Eqs. (2.17) and (2.18). 

We have constructed expressions for the eigenvalues of 
the Casimir operators ofU(N / M), N =1M, type supergroups 
only for the representations where the generalized Schur's 
lemma holds, namely whenever the dimension of the bosonic 
subspace is different from the dimension of the fermionic 
subspace. Our method is easily generalizable to the 
OSP(N /2M) supergroups as well. An extension of this work 
to the cases where the generalized Schur's lemma fails re
mains to be done. 

It is appropriate to comment on the irreducibility of our 
representations: for SU(N / M) with any N, M, all representa
tions we have presented in this paper are irreducible. For 
OSP(N 12M) all representations appearing here are irreduci
ble provided N #2M. Our method yields representations 
which are not completely reducible for both OSP(2M/2M) 
and SU(N / N), although those belonging to SU(N / N) have 
not yet come up in this paper. This point will be discussed in 
more detail in a forthcoming paper where many more repre
sentations are constructed by extending our method to 
mixed covariant-contravariant and class l-class II represen
tations. In our formalism it is easy to see the irreducibility of 
our representations as well as the troublesome cases, as de
scribed below. We will argue thatfor all cases our character 
formulas correspond to irreducible representations, even 
though the corresponding representation presents some dif
ficulty with respect to irreducibility when the number ofbo
sons and fermions are the same in the fundamental 
representation. 

First consider SU(N / N). The basis vector for an arbi
trary class I supertableau has the form 

S(A ,B,···.A.H..···.A.B .···1 

= £-111£-121"'X£-II1, t II£-IB"' +21 ... +... (7.1) 
~A,~n, ~A~ ~ _' , 
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where (A IE I"') denote the indices corresponding to first row, 
(A 2E2 ···) corresponding to the second row, etc. In this expres
sion if we set all the fermionic variables equal to zero, we 
obtain the basis of an irreducible representation of SU(N) 
corresponding to the Young tableau of the same shape. Simi
larly, if all the bosonic variables are set equal to zero, keeping 
only the fermions we obtain the basis of an irreducible repre
sentation of SU(M) corresponding to the Young tableau re
flected from the diagonal (conjugate Young tableau). The 
reason for the reflected Young tableau is that symmetriza
tion in superspace implies antisymmetrization of fermionic 
subspace. Thus the pure SU (N) and pure SU (M )subspaces of 
our representations are irreducible. Now, if any of these su
perrepresentations were not irreducible, then the pure SU(N) 
or SU(M) subspace would have to be reducible. Since this is 
not the case, our SU(N 1M) representations are irreducible 
for all N, M. 

Consider the representations of OSP(N 12M). To illus
trate the difference with SU(N 1M), it is sufficient to consider 
the completely symmetric supertraceless representation 

(7.2) 

The point is that we have to subtract the invariant subspace 
H~TA., .' etc. As shown in Eqs. (4.18), (7.2), this involves 
divi'di~'gb; the number (N - 2M). Such a procedure is neces
sary also in the construction of the representations of the 
supergroup element on this basis as shown in Eq. (4.21). 
When N =1= 2M, this operation can be done and we obtain an 
irreducible tensor. The irreducibility of the representation 
can be shown as in the previous paragraph. When N = 2M, 
we see that the invariant subspace cannot be subtracted even 
though we have clearly identified it. Therefore, this basis is 
not completely reducible when N = 2M. 

For OSP(2M 12M) the representation matrix in our ba
sis can be reduced to the form 

(7.3) 

where y is the representation of the group applied to the 
invariant subspace identified above. The character in this 
representation is Stra + Stry. Both of these pieces can be 
recovered separately from our character formula by consid
ering the N = 2M case as the limit of N-+2M. In our method, 
when the character is calculated the (N - 2M) in the de
nominator is canceled by a similar factor in the numerator so 
that the N-+2M limit can be taken smoothly. Thus our ex
pressions for the characters ofOSP(N 12M) will yield the in
variant pieces Stra and Stry separately for the case of 
OSP(2M 12M). ThereforeourOSP(N 12M )characterformu
las correspond to irreducible representations for all N, M, 
including N = 2M. 

In a forthcoming paperl? we consider covariant and 
contravariant representationsofSU(N 1M) by distinguishing 
lower and upper indices. Then we can construct new repre
sentations, which do not appear in this paper, in the form 
S I!:!;!::::)· Such bases have to be supertracelss: 
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~(_ 1)g(A,)t'IA,B,B, ... ) = O. 
~ ~ IA,A,A,· .. ) 
A, 

Thus, as in the OSP(N 12M) case, we have to subtract certain 
invariant subspaces and this involves terms in which 
(N - M) appear in the denominator. This procedure can be 
carried out when N =l=M, and we obtain irreducible represen
tations. But for SU(N IN) one identifies, in the same way, 
certain bases which are not completely reducible. However, 
the character formulas will again correctly spearate out the 
irreducible parts. These will be discussed in our next paper, 
now in preparation. I? 
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APPENDIX 

The following is a list of characters and dimensions of 
some low-dimensional representations ofU(N) calculated by 
first symmetrizing with respect to the rows and then anti
symmetrizing with respect to the columns of the Young tab
leaux associated with these representations: 

XIl.O .... ) = TrU, 

dll.D •... ) =N 0, 

XI2.0, ... ) = (l/2!)[(TrU)2 + TrU 2], 

dI2.0, ... ) = !N (N + 1) OJ , 

XII,LO, ... ) = (l/2!)[(TrUf - TrU 2], 

dl I, LO, ... ) = !N(N - 1) B ' 
X(3,O,o, ... ) = (l/3!)[(TrU)' + 3TrUTrU 2 + 2TrU'], 

dI3 .0,0, ... ) = (l/3!)N(N + 1) (N + 2) ITIJ, 

XI2,I.O, ... ) = H(TrU)3 - TrU 3
], 

d(2.I.O, ... ) =t(N-l)N(N+ 1) ~, 
XILI,I.O .... ) = (l/3!)[TrU)' - 3TrUTrU 2 + 2TrU 3

], 

dl,.""O, ... ) = (l/3!)(N - 2)(N - 1) N § , 
XI4,O,O,O, ... ) 

= (l/4!)[TrU)4 + 6(TrUfTrU 2 + 8TrUTrU 3 

+ 3(TrU 2 f + 6TrU 4
], 

d I4,O,O,o, ... ) = (l/4!)N(N + 1) (N + 2)(N + 3) DODD, 

X(3.I,O,O .... ) = H(TrU)4 + 2(TrU)2TrU 2 - (TrU 2 )2 - 2TrU4], 

d(3.I.O,Q, ... ) = A(N - I)N(N + 1) (N + 2) EfTI, 

X(2.2,D,D''''1 = rz[(TrU)4 - 4TrUTrU 3 + 3(TrU 2)2], 

d(2,2,O,O .... 1 = rz(N - I)N 2(N + 1) H3 
X(2.1,I,O, ... ) = H(TrU)4 - 2(TrU)2TrU 2 - (TrU 2)2 + 2TrU 4], 

d(2,I,',O, ... ) = A(N - 2)(N - I)N(N + 1) W ' 
XII,I,I,I,o .... ) 

= (l/4!)[(TrU)4 - 6(TrU)2TrU 2 + 8TrUTrU 3 

+ 3(TrU 2)2 - 6TrU4], f-l 
d(""""O''''1 = (l/4!)(N - 3) (N - 2) (N - I)N El 
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Infeld-Hull factorization, Galois-Picard-Vessiot theory for differential 
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The Infeld-Hull theory of factorization of second order differential operators is related. on the 
one hand. to the classical Picard-Vessiot theory and. on the other hand. to work by the author. 
GeI'fand. and Kirillov on Lie algebras contained in the field offractions or algebraic extensions of 
the enveloping associative algebra of a Lie algebra. 

PACS numbers: 02.30.Tb. 02.30.Jr. 02.lO.Sp. 03.65.Fd 

I. INTRODUCTION 

The paper by Infeld and Hull I on the factorization of 
the linear ordinary differential operators that occur in quan
tum mechanics is a famous one that has long tantalized those 
of us who work on the group-theoretic foundations ofphys
ics. It seems to suggest that there is a general algebraic 
framework for certain quantum mechanical problems gener
alizing the "annihilation--creation operator" theory of the 
harmonic oscillator. Further. it is known2 that the martix 
elements of certain Lie group representations satisfy differ
ential equations which admit Infeld-Hull type factoriza
tions. Thus. via the Infeld-Hull theory there should be a link 
between quantum mechanical dynamics and the theory of 
harmonic analysis on Lie groups. 

Another circle of ideas that is clearly related comes 
from the late 19th century when Lie theory was developed. 
The possibility offactorization oflinear ordinary differential 
operators was very well known in the 19th century. being 
tied in with the "symbolic" methods of analysis and algebra. 
Schlesinger's Handbuch,3 for example. discusses it in great 
detail. It is also linked with Galois theory, tied to the "redu
cibility" of the Galois groups. 

Another feature of the Infeld-Hull theory is the role 
played by "parameters." (One is the eigenvalue parameter; 
another provides the "ladder" structure of the solutions.) In 
terms of contemporary mathematics, this indicates the In
feld-Hull theory is a "deformation" theory.4-6 Now, similar 
deformation theories for linear ordinary differential opera
tors playa role in the modern theory of nonlinear waves
the deformations are "isospectral" and "isomonodromic." 
Both of these sorts of deformations are clearly related to 
connections in vector bundles, which is related to gauge the
ories. and so on. There are many possibilities for intercon
nection between different fields of contemporary mathemat
ics and physics. 

Actually. the immediate motivation for this work came 
from system theory. In working on the algebra-geometric 
properties oflinear. time-invariant finite and infinite-dimen
sional systems,7-9 I stumbled onto material that was very 

alSupported by a grant from the Ames Research Center (NASA), #NSG-
2402, and from the U.S. Army Research Office, #ILIGl102RHN7-05 
MATH. 

reminiscent of the Infeld-Hull ideas. 
Another motivation was work that I did almost 15 

years ago on what I called the "Gell-Mann formula.,,4-6,lo,11 
This represents one Lie algebra in terms of the skew field of 
fractions or quadratic extensions of the universal enveloping 
algebra of another. This is also related to work by Gel'fand 
and Kirillov. 12 In this way, we could define Lie algebra re
presentations of one Lie algebra in terms of representations 
of another. 

Now. for many of the "special functions" arising from 
Lie group representations, one can accomplish the needed 
factorization of the second order operator in terms of the 
universal enveloping algebra of another, infinite-dimension
al Lie algebra. Since the original differential operators (Bes
sel, Whittaker, Legendre, etc.) arose from the enveloping 
algebra of finite-dimensional algebras in a well-known way, 
one sees that the underlying explanation for this phenomena 
might well lie in the algebraic properties of the quotient 
fields of the universal enveloping algebras. 

Another noteworthy feature of these factorizations is 
that they suggest relations with algebraic geometry. Name
ly. the infinite-dimensional Lie algebras that appear in the 
Infeld-Hull factorization are realized as differential opera
tors on algebraic fields. Geometrically. these are then first 
order differential operators on compact Riemann surfaces 
with meromorphic coefficients. Now, in the examples treated 
so far. these Riemann surfaces are the simplest. the genus 
zero. However. there are indications in the 19th century lit
erature that the genus-one Riemann surfaces, i.e .• the Abe
lian varieties, also appear in this way. (Of course. that is the 
end if one sticks to vector fields-the higher-genus compact 
Riemann surfaces admit no nonzero mermorphic vector 
fields.) 

Another relation. which will not be pursued here, is 
with the Muira transformation 13 for the Korteweg-de Vries 
equations. 

II. THE ABSTRACT ALGEBRA OF THE INFELD-HULL 
PAPER 

We now formulate the basic idea of the Infeld-Hull pa
per in an algebraic way. Let rbe a vector space with a given 
field of scalars. (Typically. this is the real or complex num
bers.) Let D.D' ,D ":r --+r be linear maps. Consider the fol
lowing set of linear equations: 
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D"y' =..1,'y", 

D'y"=..1, "y'. 

Suppose that 

D=D'D". 

(2.1) 

(2.2) 

Theorem 2.1: U(y',y") is a solution of(2.1) with scalars 
A ',A ", then 

y=y" 

is an eigenvector of D with eigenvalue A = A 'A ", i.e., 

Dy=..1,y. 

Proof 

Dy=Dy" =D'D "y" =D'..1, "y' =..1, "A 'y=..1,y. 

Thus, by means of the factorization (2.2) of the operator 
D, the eigenvector equation (2.3) is replaced by a pair (2.1) of 
equations. 

Now, in general, this is of no particular help. However, 
if D is a second order linear ordinary differential operator, 
the system (2.1) will be a first order system, which might be 
easier to solve. Certainly, the solutions of many of the equa
tions that define the "special equations of mathematical 
physics" are of this form-typically, they involve the recur
sion relations satisfied by these functions. 

Another useful point is that the solution of the system 
(2.1) often involves nontrivial Lie group theory. To this end, 
we are particularly interested in the Lie algebra of linear 
operators generated by the D ',D " . 

III. AN ABSTRACT FORM OF PICARD-VESSIOT 
THEORY 

Let r be a vector space over a scalar field. (The scalar 
field should have zero characteristic. In the applications it 
will be the real or complex numbers.) Let L (F) denote the 
algebra oflinear maps: r -+r. Let G L(r ) denote the group of 
automorphisms of r. 

An algebraic model of a differential structure on r will 
be defined by a linear map 

8=r-+r, 

and an algebra (under composition) d oflinear operators on 
r such that the following condition is satisfied: 

[a,8]=a8 - 8aEd for all aEd. (3.1) 

An automorphism of the differential structure will be an ele
ment of gEGL(V) such that 

g8 = 8g, (3.2) 

gag-iEcW', for all aEcW'. 

A differential operator associated with the differential struc
ture will be an element 

DEL (F), 

which can be written in the form 

D = an 8n + ... + ao, 

where ao, ... ,anE.W'. 

(3.3) 

The smallest integer n such that an #0 is called the order of 
the differential operator. Let Y(D ) be the space of solutions 
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y of the equation 

Dy=O, 

i.e., algebraically, Y(D) is the kernel of D. An automor
phism g of the differential structure is said to be a symmetry 
of the differential operator if it satisfies the following 
condition: 

gY(D)cY(D). (3.4) 

The set of such symmetries forms a group called the 
Galois group of D, denoted by G (D ). 

In Galois theory, one is interested in two "functors." 
The assignment 

D-+Y(D) 

and 

D-+G(D). 

Notice that G (D) by its very nature admits a representation 
by linear maps in Y(D ), called the Picard- Vessiot 
representation. 

This is, of course, just a collection of definitions. What 
is needed to give it more kick is some hypothesis about rand 
8, and the class of D's which assume that G (D) is a Lie group, 
and that relates the structure of G (D ) to the algebraic struc
ture of the D's. 

The traditional example where these conditions are sat
isfied is that where r is the space of functions of a complex 
variablez, which are analytic in some region of the complex z 
plane 8 = d /dz, and the algebra d consists of operators of 
multiplication by analytic functions. The operators of form 
(3.3) are then the ordinary linear differential operators in the 
usual sense. One of the main theorems proved by Picard and 
Vessioe4

•
15 is that the reducibility of the Galois group D, as a 

group of linear transformations on Y(D ), is equivalent to 
reducibility of D, in the sense that it can be factored to the 
product oflower order operators. I will not attempt to prove 
this result here. Instead, let us examine it for the special case 
of second order ordinary linear differential operators with 
rational coefficients. 

IV. FACTORING SECOND ORDER DIFFERENTIAL 
OPERATORS WITH RATIONAL COEFFICIENTS 

Let r be a vector space of analytic functions in some 
region of the complex plane, with coordinate z. Suppose r is 
preserved under multiplication by rational functions and dif
ferentiation. Let d be the algebra of linear operators on r 
resulting from multiplication by rational functions. Set 

Let 

d 
0= -. 

dz 

(4.1) 

be a second order linear differential operator with rational 
coefficients ao,a \. 

Let us now try to factor D: 

D = (0 + bo)(o + co) 

= 02 + boO + &0 + boco 

= 82 + (bo + co)8 + 8(co) + boco· (4.2) 
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Comparing (4.1) and (4.2), we have 

8(co) + boco = ao' (4.3) 

This leads to a differential equation for co: 

o(col = dco 
dz 

= ao - (a l - co)co' (4.4) 

This is a Riccati equation for cu, which is well known to be as 
difficult to solve as Eq. (4.1) 

To deal with this in the fashion of contemporary differ
ential algebra, 16.17 let Y be the smallest field of functions 
containing the rational functions and the two linearly inde
pendent solutions of Dr = O. The Galois group of D is then 
defined as the subgroup of the automorphisms of (Y,8 ) 
which leave invariant the rational functions. 

Now, a solution of the Riccati equation can be obtained 
from a particular solution y of Dy = O. Set 

c = - 8(YlY- I
. (4.5) 

Then, 

8(c) = - 82(YlY- I + 8(yj2y-2 

= [8(y)a l + aoY] y-I + c2 

= -cal +ao +c2
• (4.6) 

Thus, c and Co satisfy the same Riccati differential equation. 
The steps are reversible; if Co is a solution of(4.4), then Yo such 
that 

(4.7) 

is a solution of Dyu = O. 
LetYI'Y2 be any two linearly independent solutions of 

Dy = 0, and let Yo be defined by (4.7). Then,yo is a solution of 
Dy = O. Hence: 

There are constants AI,A2 such that 

(4.8) 

Now, if D factors in the form (4.2) with rational coeffi
cients, then there is a co' a rational function, and A 1,A2 com
plex numbers, such that (4.7) and (4.8) hold. 

Now, supposeg is an element of the Galois group of D's, 
i.e., g is an automorphism of the differential field Y which 
leaves invariant the rational functions. Then, g maps solu
tions of Dy = 0 into solutions 

where 0'11, ... ,0'22 are scalars. Also, 

g(co) = co, 

since Co is rational. Since g commutes with tj = d / dz, we see 
that 

g leaves invariant the linear subspace of .Y(D ) spanned 
by Yo' 

Thus, in this case, we see quite explicitly how reducibility of 
the Galois group of D is equivalent to factorizability of D in 
terms of differential operators with rational coefficients. 
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V. THE INFELD-HULL FACTORIZATION OF THE 
BESSEL EQUATION 

To see a nontrivial example of factorization in the In
feld-Hull sense, take r to be a space of an analytic function 
of the complex variablez, in a region Z of the complex plane. 
Let 8 = d /dz. Set 

(5.1) 

Then, the eigenvectors of D with eigenvalue A = 1 are the 
solutions of the Bessel equation. Set 

A s;:· -I 
j = U + JZ . 

Let us try to write D as a product: 

D=AjAk 

= (8 + jz-I)(8 + kz- I) 

= 82 + (j + k )z-Itj - kz- 2 + jkz- 2
• 

Compare (5.3) to (5.1): 

or 

j+k=1 

- n2 =jk - n 
=j(l-j) - n, 

_n2 +n =j-/ 

j= n, k = 1- n, 

D = (8 + nz-I)(tj - (n - 1)z-1) 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

The Lie algebra generated by the differential operators A is 
an interesting one: 

[An,An] = [0 + nz-I,tj + mz- I] 

= (n - m)B2' 

with 

Set 

Bn=z-n. 

Then, 

[An,Bm] = Bm+ I' 

[Bn,Bm] = O. 

(5.6) 

(5.7) 

(5.8) 

Let .Y be the Lie algebra generated by the vector fields An. It 
has an interesting graded structure: 

.Y = subspace spanned by the An' 

'y l 
+j = one-dimensional subspace spanned by BI +j' 

j= 1,2···. 

Then, 

['yj,'y k ] c.Yi+ k. 

Set 

.Yj = 'yj + 'yj + I + .... 
The .Yj determine a filtered Lie algebra. Then, .Y 2' .Y 3"" 

form abelian ideals. This exhibits a sort of "generalized nil
potent" structure of .Y. 

What we have done is to find a one-parameter family of 
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differential operators 

4-.Dx 

such that: 

For 4 = 1, D is the Bessel operator itself. 

For 4 = 0, D factors over the rationals. 

Thus, the Galois group 

4-+Gx(Dx) 

is a one-parameter family of groups-a "deformation"
which becomes reducible for 4 = O. 

VI. THE INFELD-HULL FACTORIZATION FOR THE 
WHITTAKER EQUATION 

The Whittaker functions are generalization of the Bes
sel functions. (From the Lie group point of view, both sorts of 
functions are matrix elements of representations of solvable 
Lie groups.2) 

Consider the following Lie algebra of first order differ
ential operators generated by the vector field 

V= z l 12!!...-
dz 

and the functions 

II=ZI!2, 12=Z-I/2. 

According to Ref. 2, p. 415, we have 

(V -- p 12 + Vd [ V + !(2p - 1) 12 - VI] - (P - 4 - !) 

=Z-I( :z: -! +4Z- 1 + U _p2)Z-2). (6.1) 

This is, of course, an Infeld-Hull type of factorization. 
It is interesting to calculate the Lie algebra !f generat

ed by the V.JI.J2 [the expression on the left-hand side of(6.1) 
is then on the universal enveloping algebra of !f]: 

V(fd =! 
V(f2) = - !z-I 
V(Z-I) = - ZI/2Z-2 

= _Z-3/2 

and so on. 
Notice that the functions obtained in this way are al

ways rational functions in Z 112. Thus, !f can be described 
very elegantly in terms of Riemann surface theory. 

Theorem 6.1. The Lie algebra!f involved in the recur
sion relations and the Infeld-Hull structure of the Whittaker 
functions can be realized as meromorphic, first order differ
ential operators on the Riemann surface of the algebraic 
curve 

w2 =Z. 

VII. THE LIE ALGEBRA AND INFELD-HULL 
STRUCTURE FOR THE LEGENDRE FUNCTION 

The process we have gone through for Bessel's equation 
and the Whittaker functions can be repeated for virtually 
every "special function" given in the treatise by Vilenkin.2 

For example, on p. 137, he proves the following formula: 

1166 J. Math. Phys., Vol. 22, No.6, June 1981 

(V -- In + l,m)(V + In.m) -- (/- n)(1 + n + 1) 

where 

V = (1 _ Z2)1/2 ~, 

In,m = (nz - m)/(l -- Z2)112. 

(7.2) 

(7.3) 

Let 91 be the field of rotational functions on the Rie
mann surface of the algebraic curve 

(7.4) 

V is a derivation of this field, and each/n•m is an element of 
91. Thus, the Lie algebra !f generated by the operators ap
pearing in the Infeld-Hull factorization of the operator on 
the right-hand side of (8.4) is a Lie algebra of first order 
rational differential operators on the Riemann surface. 

VIII. THE LIE ALGEBRA OF THE INFELD-HULL 
RELATIONS IN TERMS OF THE RATIONAL 
ENVELOPING ALGEBRAS OF FINITE-DIMENSIONAL 
LIE ALGEBRAS 

In previous sections we have presented some calcula
tions which seem to indicate that the Lie algebra ,Y' which 
generates certain of the Infeld-Hull factorizations are natu
rally interpreted in terms of compact Riemann surfaces. 
However, the functions we have been dealing with appear as 
matrix elements of representations of Lie groups. Thus, we 
might also look for some more direct relation to Lie groups. 
We will restrict attention here to the Bessel equation. 

Let M be the unit circle in R 2, parameterized by real e, 
o.;;;e < 21T. LetF(M)bethe Coo, complex-valued functions on 
M. Let Z denote the complex numbers, with complex coordi
nate z. Let cCJf(Z) be the space of analytic functions on z. Let 

B:F (M )-+,#(Z ) 

be the following mapping: 

B (()(z) = ftr eiz sinli/(e )de. (8.1) 

Let ;g be the Lie algebra of operations on F (M) spanned 
by the following three: 

a 
C I =-, ae 
C2 = sine, 

C3 = cose. 

We see that ;g is a solvable Lie algebra, isomorphic to the 
group of rigid motions in R 2. !f, the Lie algebra which is 
generated by the operators 

Now, 

Set 

d 
dz' 

-I 
Z . 

!!...-(B (fll = iB (C2(fll· 
dz 
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C .( fJ)-1 d 4= -ICOS --
dfJ 

Then, 

z(B (f)) = B (C4(f)). 

Thus, at least formally, 

z-IB (f) = B (C 4- l(f)) 

= B (iC 1- IC3). 

Thus, the Lie algebra 5/ is essentially generated by 

A I C2 iC I-IC3 • 

Let us check this out with the commutation relations 

[C"C21 = C3, 

[CI,C)] = - C2 , 

[C2,C3] = O. 

Thus, 

[C2,C 1-IC3 ] = [C2,C 1- I ]C3 

= - C 1-I[C2,CI ]C j- IC3 

= (C 1- IC3 )2. (8.2) 

Again, we see that C2 and C 1-'C3 generate a graded Lie 
algebra of a generalized nilpotent type. 

Now, algebraically, objects like C 1- IC3 are elements of 
the "field offractions of the universal enveloping algebra of 
5/,,,2 denoted as .3'(5/). Analytically, they are "pseudodif
ferential operators on the manifold M." Let us formulate this 
in general terms as follows: 

Consider a Lie algebra Y. Construct the associative 
universal algebra U (Y). U (Y) consists of the polynomials 

AI···A n 

in the elements of Y subject only to the associative law and 
to the relations: 

[A I2.A 2] =AIA2 -A01' 

Gel'fand and Kirillov then construct the "quotient field" of 
rational functions, 

A 1- 'A2···A n- I ••• 

denote this as QU( 9?). It too is a Lie algebra. 
Suppose that we have another representation 

p':5/ ---+QU( Y) 

for some Lie algebra Y. We might be able to construct a 
representation 

a:Y---+Y 

then extends to U (9? ). 
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Let us suppose that the algebra !iJ of differential opera
tors on d can be enlarged to another Lie algebra 9!iJ of 
operators called pseudodifferential operators. Let us also say 
that a can be extended to a representation 

a:QU( Y )---+9 !iJ . 

Suppose finally that there is given another Lie algebra 
representation 

p':5/ ---+QU(Y). 

Compose this with a I to obtain a Lie algebra homorphism 

ap':5/ ---+9!iJ. 

Thus, we have two representations of 5/ into the "pseu
dodifferential operators": the original representation pinto 
the differential operators and the ap' we have just construct
ed. It then may be possible to construct a linear map 

f3:~---+d 

which intertwines these two representations of Y . 
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The "isomonodromy deformation" condition is expressed as a curvature-zero condition, thus 
bringing to the foreground the relations to other approaches in the theory of nonlinear waves. 

PACS numbers: 02.30.Jr, 02.30.Dk 

I. INTRODUCTION 

The theory of nonlinear waves and solitons has focussed 
attention on a mathematical structure called "isospectral de
formation of differential operators.'",2 It has been discov
ered that there is a close link between this condition and the 
theory of connections in fiber bundles. 3

-
s Indeed, finding 

"isospectral deformations" is equivalent to finding certain 
two-dimensional submanifolds of the base of a fiber bundle 
with connection such that the curvature differential forms 
are zero when restricted to this submanifold. This has the 
added virtue of relating the theory of isospectral deforma
tion with two topics-Cartan's theory of exterior differential 
systems and connections and the theory of Yang-Mills 
fields, which also involve connections in fiber bundles and 
physical equations defined by conditions on the curvature of 
these connections. 

There has recently been some attention by mathemati
cians and physicists to a notion which is related to isospec
tral deformation, namely, "isomonodromy deformation."6-9 
Here, one tries to define deformations of linear ordinary dif
ferential operators so that the monodromy group is pre
served. The notion goes back to the classic work of the 19th 
and early 20th centuries, particularly by Fuchs and Schle
singer. My aim here is to show how "isomonodromy" can be 
defined as a curvature-zero condition. I show that the partial 
differential equations which are obtained can be reduced to a 
system of ordinary nonlinear equations. 

In Ref. 10, Morris and Dodd have discussed another 
method of introducing fiber bundles and connections. 

II. ISOMONODROMY IN THE SENSE OF FUCHS AND 
SCHLESINGER AS A CONNECTION 

Let Z be a connected open subset of the Riemann 
sphere, i.e., the complex plane with the point at infinity add
ed on. Let z be the complex coordinate of Z Let d = d /dz, 
acting on complex-valued functions which are analytic in z. 
Let 

D = d" + an __ I (z)d" - I + ... + ao (2.1) 

be a linear differential operator with coefficients which are 
analytic functions in z. (Of course, they may have singulari
ties at the points of the Riemann sphere which lie outside of 
Z) To solve Dy = 0 for an analytic function z~y(z) is the 
same as finding a flat cross section for an analytic fiber bun-

alSupported by Ames Research Center (NASA), Grant NSG-2402, U.S. 
Army Research Office, Contract #ILi61102BHS7-0S MATH, NSF 
MCS8003227. 

die E over Z. Namely, let E locally have coordinates 

(z,yo, .... ,Y" _ I ), 

with (YO, ... ,Yn _ I) the coordinates of the fiber, z the coordi-
nate of the base. Let 

OJ" _ I = dy" I + (an IY" ... I + ... + aoyo) dz, 

OJ" 2 = dYn_2 - Yn __ I dz, (2.2) 

OJo = dyo - Yl dz. 

The forms (OJo, ... ,OJn __ I ) then define the connection on the 
bundle. The structure group in the bundle is a subgroup of 
GL(n, C), the group of n X n complex matrices. 

Now the curvature of this connection is zero. The mon
odromy group appears as the holonomy group of the connec
tion; II it is a discrete group, a homomorphic image of the 
fundamental group of Z 

Now, introduce a new fiber space E', with base Z X T, 
where T is an interval of real numbers, parametrized by t, 
and whose fiber is also en. Set up a connection in this bundle 
by introducing the following connection fonn: 

(2.3) 

The coefficients a and b are continuous functions on Z X T, 
which are analytic in Z. The b 's are independent of t and 
satisfy 

abo = 0 = ... = ab" - I. 

at at 
(2.4) 

Theorem 2.1: Suppose that the curvature of the connec
tion defined by the forms (2.3) is zero, with (2.4) satisfied. Let 
G (t) be the monodromy group of the differential operator, 
with the parameter value t considered as a group of n X n 
complex matrices, i.e., as a subgroup of the Lie group GL (n, 
C). Then, there is a continuous map t~g(t) in GL (n, C) such 
that 

G (t) = g(t)G (O)g(t) - I for all t. 

(In the language of deformation theory, the deformation of 
subgroups t~G (t) is "trivial.") 

Proof: Let us write (2.3) and (2.4) in a matrix notation: 

OJ = dy - A (z,t)y dz - B (z)y dt, (2.5) 

where OJ is a n X I matrix of I-forms, A and Bare n X n matri
ces offunctions [analytic onz,jointly continuous in (z,t I]. Let 
s~z(s), - 00 < s < 00, be a closed curve in Z with 

z(s + 1) = z(s). (2.6) 

Construct a connection in the product bundle 
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R2XC 

over R 2, with connection form 

dz 
u/ = dy - A (z(s),t )y(s) - ds - B (z)y dt. 

ds 
(2.7) 

[Geometrically, this is the pull-back of the connection under 
the mapR X T -+Z X T, (s,t )-(z(s),t).] The curvature of this 
connection is also zero. Since the base is simply connected, 
there are cross sections 

(s,t )~y(s,t ) 

which are flat, i.e., satisfy the following differential 
equations: 

ay = A (z(s),t )y(s)dz, 
as ds 

ay = B (z(s))y. 
at 

(2.8) can be readily solved: 

y(s,t ) = exp[tB (z(s))y(s,O)]. 

(2.8) 

(2.9) 

Then, s-y(s,O) is the solution of the linear differential equa
tion (2.8) with periodic coefficients. 

Hence, 

y(s + 1,0) = My(s,O), (2.10) 

where M is a constant n X n matrix. 
Insert (2.11) into (2.9): 

y(s + I, t) = exp[tB (z(s + 1))]My(s,O) 

= exp[tB (z(s + 1 ))]Mexp[ - tB (z(s + 1 ))lY(s,t). 

We see from this that 

exp[tB (z(s + 1 )]]Mexp[ - tB (z(s + 1))] 

is the element of the monodromy group of the differential 
equation (2.1) at the value t of the parameter corresponding 
to the closed curve s~z(s). Thus, as the curve varies, we see 
that the monodromy group of the Eq. (2.1) is conjugate, as a 
subgroup ofGL(n,q, to a fixed group, which is the meaning 
of "isomonodromy." 

III. PARTIAL SOLUTION OF THE ISOMONODROMY 
DIFFERENTIAL EQUATION 

The conditions for zero curvature of a linear connection 
(2.5) are well known. In nonlinear wave theory they are often 
called the Zakharov-Shabat equations: 

aA 

at 

1169 

aB = [A,B]. 
az 
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(3.1) 

To this must be added the following isomonodromy 
condition: 

aB =0. 
at 

Differentiate both sides of (3.1) with respect to t: 

a
2

A = [aA ,B]. 
at at 

Hence, 

aA aA 
-(z,t) = exp[ - tB (z)]-(z,O)exp[tB (z)] 
at at 

equals, using (3.1) 

exp[ -tB(Z)](~~ + [A (z,O),B(z)])exp[tB(z)] 

= Ad exp[ - tB (Z)]( ~~ + [A (z,O),B (Z)]). 

Hence, 
A (z,t) = {Ad[ - B (z)]}-IAd exp[ - tB (z)] 

x(~: + [A (z,O),B(Z)]) 

+ A (z,O) - {Ad[ - B (Z)J}-l( a;: + [A (z,O),B (Z)]). 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

Now, if(3.6) is substituted into (3.1), there results a nonlinear 
differential equation for B (z). 
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We extend the methods ofa previous paper [J. Math. Phys. 21, 2508 (1980)], factorizing the 
general, scalar, third-order differential operator, and obtain a Miura transformation for the 
Boussinesq equation. We give a general factorized eigenvalue problem. We also give a 
Hamiltonian structure associated with the factorized eigenvalue problem. We derive several 
isospectral flows, some of Klein-Gordon type. 

PACS numbers: 02.30.Jr, 02.30.Tb 

1. INTRODUCTION 
In a recent paper· (referred to below as I), we discussed 

the factorization of some particular third order Lax opera
tors, with emphasis on "Miura transformations" and their 
associated modified equation. In this paper we consider the 
general third order scattering operator 

L=a3 +va+!vx +w, (1.1) 

(where a =a x =a I ax) of which the two operators discussed 
in I are special cases. This is the scattering operator for the 
well known Boussinesq equation. 2

•
3 

In Sec. 2 we factorize this operator, deriving an associ
ated 3 X 3 matrix scattering problem. The matrices involved 
all belong to the Lie algebrasl (3,R), a point which we develop 
in later sections. We derive the first two polynomial isopec
tral flows, the first of which is trivial, being just the transla
tion equation, and the second of which is related to the Bous
sinesq equation by a Miura transformations.4 We shall refer 
to this system as the "modified Boussinesq equation". 

Polynomial flows of higher order may be constructed 
recursively; in Secs. 3 and 4 we consider a systematic method 
of constructing the recursion operator. In Sec. 3 we consider 
the matrix scattering problem in the adjoint and coadjoint 
representations of sl (3,R). The coadjoint equations are satis
fied by analogues of the usual "squared eigenfunctions". 5 By 
eliminating variables we derive an integro-differential opera
tor, whose adjoint is shown to be a recursion operator6 relat
ing isospectral flows. In Sec. 4 we give a different derivation 
of the recursion operator and exploit the relationship be
tween the two expressions to derive a Hamiltonian structure. 
We indicate how the recursion operator generates the iso
spectral flows discussed in Sec. 2. We then calculate, as a 
special case of the fifth order system, the "modified Ku
pershmidt equation" discussed in I. 

In Sec. 5 we consider isospectral flows of Klein-Gor
don type. These systems, generalizations of the sinh-Gor
don equations, are related to the 3-particle, periodic Toda 
lattice. We generalize this further to the n-particle lattice in 
another paper. 7 

2. FACTORIZATION OF THE SCATTERING OPERATOR 
The Boussinesq equation 

v" = -!(v4x + 2(v2)x), (2.1) 

written as the system 

v, = 2wx , 

w, = - i(V3x + 4uux ), 

may be represented as a Lax pair2
•
3 

L, = [P,L], 

where 

L = a3 + va + ~vx + w, 

(2.2) 

(2.3) 

p = a2 + ~v. (2.4) 

The scattering operator L may be decomposed into the 
product 

L' = (a + y - z)(a +2z)(a - y - z), (2.5) 

provided we can find y and z such that 

v = - (2y x + 3z2 + y2), 

W = - [zxx + 3yzx + zyx + 2z(y2 - Z2)]. (2.6) 

The eigenvalue problem of L 

LtP. = ;3tP• (2.7) 

may then be written as 

; 
-2z 
o 

(2.8) 

The matrix on the right of (2.8) is an element of the Lie 
algebra sl (3,R)( traceless, 3 X 3 matrices); it can be expanded 
in terms of any convenient basis of that algebra. Such a basis, 
together with its commutation relations, is given in the 
Appendix. 

With respect to this basis, Eq. (2.8) is written 

a1jJ = (;RI + yR2 + zRs)1jJ, (2.9) 

where 1jJ = (tPPtP2,tP3(' 
The general eigenvalue problem associated with sl (3,R) 

(keeping; in the same position) is 

a1jJ = u1jJ, (2.10) 

where u = ~~ ~ I uiRo u 1=;, and the remaining ui are arbi
trary functions. 

Consider a time evolution of 1jJ of the form 

(2.11) 

whereA = ~J~ IA 'R i ES/(3,R) and theA i are functions ofu\ 

their x-derivatives, and ;. 
If (2.11) is to be consistent with (2.10), then 

a,u - aA + [u,A ] = O. (2.12) 

In terms of the basis \ Ri l Eq. (2.12) becomes 
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a,uk _ aA k + u'AjC~j = 0, (2.13) 

where C ~j are the structure constants of sl (3,H) with the giv
en basis. 

When the eigenvalue problem is associated with the fac
torization of a scalar operator, taking the form of (2.9), Eq. 
(2.13) becomes (with u2 = y and u5 = z), 

aA 1 = 2(u5A 6 _ u2A 3), 

aA 2 = a, u2 - 3 sA 7, 

aA 3 = sA 2 _ u2(A 1 +A 3) _ u5A 6, 

aA 4 = 3 sA 3 + 3u5(A 7 _ A 8) _ u2A 4, 

aAS=a,us + SA 4, 

aA 6 = 3uS(A I _ A 3) _ 3 sA 5 + u2A 6, 

aA 7 = _ sA 6 + u2(A 7 +A 8) + uSA 4, 

aA 8 = 2(u2A 7 _ uSA 4). 

A trivial solution of (2.14) is 

A =U, 

corresponding to the translation flow 

where u = (u· ,usf, 
A more interesting solution is given by 

A 1 = A 4 = A 7 = 0, 

A 2 = 2U 2U5 + u;, 
A 3 = su5

, 

AS = H(u 2)2 _ 3(US)2] - !u;, 

A 6 = su2
, 

A 8 = S2, 
which generates the flow: 

u2
, = uS

xx + 2(u 2uS )x' 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

us, = - ju\x - j[3(US)2 - (u 2fJx, (2.18) 

which we refer to as the modified Boussinesq equation, it 
being related to (2.2) by the "Miura transformation" (2.6). 

These flows and a sequence of higher-order polynomial 
flows may be generated recursively, as will be discussed in 
the following sections. 

3. COADJOINT STRUCTURE AND SQUARED 
EIGENFUNCTIONS 

The inegrability condition (2.12) 

Ax - [u,A] =u, (3.1) 

is considered as a linear, inhomogeneous equation for A. The 
corresponding homogeneous equation, 

(3.2) 

is the adjoint representation of (2.1 0), 1/1 being an element of 
sl (3,H). Equation (3.2) may be derived from the requirement 
that the integral 

J<<p,l/Ix - [u,l/I]) dx (3.3) 
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be stationary with respect to variation in <P, where <P is an 
element of the vector space dual to sl (3,H) and < , ) denotes 
the inner product between elements of these spaces. 

Requiring this same integral to be stationary with re
spect to variations in 1/1 we obtain the adjoint (it is unfortu
nate that the word "adjoint" has several distinct meanings) 
of(3.2): 

<Px= -(u,<P}, (3.4) 

where (u,<P I = ad:<P is defined by 

«u,<P 1,1/1) = (<P,[u,I/I]). (3.5) 

The linear transformation ad: on the dual of the Lie algebra 
is a representation, called the coadjoint,8 of the element 
( - u) of the algebra. 

If 1/1 is expanded in terms of the basis (R I I and <P in 
terms of its dual basis, then 

8 

(<P,I/I) = L <PI 1/1 I 
i=1 

so that (3.4) becomes 

<Pk,x = - uiC;k<P
" 

Equations (3.1) and (3.4) imply 

J (<P,u t ) dx = 0, 

(3.6) 

(3.7) 

(3.8) 

which should be compared with (3.13) below. This equation 
relates the time evolutions of the eigenvalues and the field 
variables. In the case developed below these are respectively 
u· and the pair (u 2,usl. 

Squared Eigenfunctions: Consider the integral 

J tP (t/Jx - ut/J) dx, (3.9) 

where tP and t/J are row and column three-vectors and 
uESI (3,H), and require that it be stationary with respect to 
variations of tP and t/J, obtaining 

t/Jx = ut/J, 

which is just (2.10); and its adjoint, 

tPx = - tjJu. 

The matrix 

(3.10) 

(3.11) 

(3.12) 

is then easily seen to satisfy Eq. (3.2). Ifwe now look for 
those deformations of u which leave the integral (3.9) sta
tionary under the above mentioned variations, we obtain the 
condition 

(3.13) 

where u = l:~ = • uiRi and Ii is the deformation of u. 
It is easily seen that the functions 

<Pi = tPR;l/1 
= Tr(R, 1/1) = Tr(R,Rj)1/1 j (3.14) 

satisfy Eq. (3.7). The matrix Tr(RjR}, known as the trace 
form, is important in the study of the Hamiltonian structure 
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associated with the eigenvalue problem (2.10), as will be dis
cussed in the next section. 

These cJ>i and 1[1 i are the sets of squared eigenfunctions 
used for the theory of perturbed solitons. 9 They are also of 
importance in the theory of periodic solutions. 10,' , The sys
tem (3.7) then represents the squared eigenfunction equa
tion, and gives us a way of constructing this explicitly, as will 
be seen below, 

The Recursion Operator: We want to find an operator 
Mt which maps one isospectral flow into another of higher 
order. To do this we consider the, condition (3.13) and re
quired that the eigenvalue; =u' be constant [for the eigen
value problem (2.8)] 

I(I?cJ>2 + ti5cJ>5) dx = O. (3.15) 

We are thus interested in a linear operator whose eigenfunc
tion is the column vector (cJ>2,cJ>5)T. We achieve this by elimi
nating the remaining components cJ>k from the system of 
Eqs. (3.7): 

and 

cJ>l,x = u2cJ>J - 3U5cJ>6' 

cJ>2.x = - ;cJ>3' 

cJ>3.x = 2u 2cJ>, + u2cJ>J - 3;cJ>4 + 3U5 cJ>6' 

where M = M 3M 2M,. 

(3.18) 

(3.19) 

Multiplying the integral (3.13) by; 3 and using (3.19) we 
get 

0= L tii(McJ>i) dx 
i= 2.5 

(3.20) 

so that M t Ii is also an isospectral flow; hence M t is a recur
sion operator for the eigenvalue problem (2.8). 

4. HAMILTONIAN STRUCTURE 

In this section we find a relationship between the opera
tor M and its adjoint, and exploit this to construct a Poisson 
bracket for the systems under discussion. 

Since for simple Lie algebras, the trace form 

gij = Tr(RiRj) 

is nonsingular, Eq. (3.14) implies 

1[1 = g -'cJ>. 

1172 J. Math, Phys., Vol. 22, No.6, June 1981 

(4.1) 

(4.2) 

cJ>4,x = U2cJ>4 - ;cJ>s - U5cJ>7 + 2u~cJ>g, 
cJ>s,x = 3 ;cJ>6' 

cJ>6.x = - 2u
5cJ>, + u5 cJ>s - U2cJ>6 + ;cJ>7' 

cJ>7,x = 3 ;cJ>2 - 3U5 cJ>4 - U2cJ>7 - 2u2cJ>g, 

cJ>s,x = 3UScJ>4 - U2cJ>7' 

From this system of equations we derive: 

and 

where 

In particular, 

(::) = (~ ~)(::) =g-' (::) , 

wherer g is the appropriate projection of g. 
Hence, from Eq. (3.19) we get 

whereM=g-'Mg. 

(3.16) 

(3.17) 

(4.3) 

(4.4) 

We now look for A k, polynomials in;, satisfying Eq. 
(3.1). Since u~ must be independent of ;, it is clear from 
comparisonof(3. 1) and (3.2) that A 2andA 5 are polynomials 
in ; 3 and their coefficients satisfy 

(4.5) 

Since 

(::), = a e :r) , (4.6) 

we find that 

aMa- ' =ag-'Mga-' (4.7) 

is a recursion operator, relating isospectral flows of (2.9). It 
may be verified that this operator is equal to M t. 

Now we consider the adjoint of Eq. (3.19): 
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(4.8) 

where (j) 2 and (j) S are the "adjoint wavefunctions". However, 
since 

Mt =ag-1Mga-l, 
by taking 

(::) =ag- 1 (::) 

(4.9) 

(4.10) 

we may solve Eq. (4.8). Thus, using the fact that eigenfunc
tions 4> ( ; ) at one eigenvalue are orthogonal to the adjoint 
eigenfunctions (j) ( ; ') at a different eigenvalue, we derive 

f(4)2,4>S)(; )ag- 1 (::) (;') dx = 0, (4.11) 

when; =/:-;'. Because ofEq. (3.13) we may consider 4>2 and 
4>~ as the functional derivatives of; with respect to u2 and US 

respectively. Therefore, Eq. (3.3) may be considered as ex
pressing the involution of distinct eigenvalues with respect 
to the Poisson bracket 

(4.12) 

Hence 

(4.13) 

It is now apparent that Mtlu'=:;o must be applied twice in 
order that the condition (3.37) be retained. The simplest 
nontrivial flow which may be generated in this way is thus 
given by 

at u2 =~[(u2+a)2-2u2a-lu2(a+u2)1¥1 

X[ - t(u2 - af + 2((U2)2 - au2)a- 1u2] xO 
= olO[(u2 + a)2 - 2u2a- 1u2(a + u2)1 

Xa[2(u 2f - au2)]Kl 

= [U2
4x - 5u2 "u2

xx _ 5U2(U~)2 

- 5(u2)2u2
xx + (u2)S]x (4.19) 

on giving the constant of integration, K l' the value -~. This 
is the system referred to in I as the modified Kupershmidt 
equation. 

5. NONLINEAR KLEIN-GORDON EQUATIONS 

In order to generate isospectral flows of nonlinear 
Klein-Gordon type we require solutions of (2.14) for which 
A is inversely proportional to; 
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are the Hamiltonian equations. It may be checked that the 
Hamiltonians of distinct flows, generated by the recursion 
operator M t, are in involution with respected to this Poisson 
bracket. 

Some Polynomial Flows: The first two nontrivial flows 
(2.16) and (2.18) may both be written as 

(4.14) 

where the coefficients of each are determined by the con
stants of integration in M t. Higher flows may be generated 
by successive application of M t; the subsequent constants of 
integration may then be set equal to zero as they contribute 
nothing new. However, the calculations involved are rather 
tedious, so will be omitted here. Nevertheless, it should be 
pointed out that the integration invovled in these calcula
tions can always be performed, the integrands being deriva
tives of the momentum density 

HI = t(U2)2 + (US)2 (4.15) 

or the modified Boussinesq Hamiltonian density 

(4.16) 

"along" an isospectral flow, and are hence exact space de
rivatives, since these densities are conserved. 

A special case of some interest is the restriction 

us=O. (4.17) 

This corresponds to choosing the scalar operator L of (2.4) 
to be skew-Hermitian (the choices u2 ± US = 0 are easily 
seen to be equivalent). With this restriction the recursion 
operator M t becomes 

(4.18) 

A k =ak
/;. (5.1) 

We write Uk in potential form 

Uk=()kx' (5.2) 

Equations (2.14) may be simplified considerably; to see this, 
we consider the third member of this set 

(5.3) 

Since the a's are independent of;, a2 must vanish. By similar 
arguments we get 

Equations (2.14) then reduce to 

a; = 38\(a7 
- as) - 8 2

x a4
, 

a: = 8 2
x (a7 + a8

) + 8 S
x a4

, 

a! = 2(8 2"a7 
- 8\a4

), 

and 
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(5.5) 

(5.6) 
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To solve (5.5) we require that the a k should be functions of 8 2 

and 8 5 alone. 

We thus obtain 

a4 = _ ¥Jexp(38 5 _ ( 2) + ~rexp( _ 8 2 -3( 5), 

a 7 = aexp(28 2) - VJexp(38 5 _ 8 2) _ ~rexp( _ 8 2 _ 3() 5), 

as = aexp(2() 2) + {3exp(3() 5 _ () 2) + rexp( _ () 2 -3( 5). 

The equations of motion (5.6) then become 

() 2 Xl = 3aexp(2() 2) _ ¥Jexp(3() 5 _ 8 2) 

_ ~rexp( - () 2 _ 3() 5), 

(5.7) 

() 5 xl = ¥Jexp(3() 5 _ () 2) _ ~rexp( _ () 2 _ 3() 5). (5.8) 

If a, {3 and r are all strictly positive, then without loss of 
generality they may all be taken to be l' Hence 

8 2 
xl = exp(2() 2) _ exp( _ () 2)cosh(3() 5), 

() 5 xl = exp( _ () 2)sinh(3() 5). (5.9) 

If () 5 is allowed to take imaginary values then the system (5.9) 
possesses multisoliton solutions. 

These systems and some generalization of them related 
to the Toda lattice have been discussed in more detail else
where,7 in which we show they possess a Backlund transfor
mation. These general systems have also been considered by 
Mikhailov '2 and Kupershmidt. 13 

An interesting special case of (5.9) is when 

() 5=0, (5.10) 

which corresponds to the restriction (4.17). Then 

() 2 xl = exp(2() 2) _ exp( _ () 2). (5.11) 

This equation has been discussed by Dodd and Bullough 14 

and Ibragimov. '5 

6. CONCLUSIONS 

This paper has had two main objects. The first of these 
was to extend the results ofI to the general operator (1.1). 
The second was to develop a general scheme for constructing 
appropriate sets of squared eigenfunctions together with a 

The commutation relations for these are given by: 

R, R2 R3 R4 

o 

1 A. P. Fordy and J. Gibbons. J. Math. Phys. 21. 2508 (1980). 
2V.E. Zakharov and A. B. Shabat. Func. Anal. Appl. 8. 226 (1974). 
'H. C. Morris. J. Math. Phys. 17. 1867 (1976). 
4R. M. Miura. J. Math. Phys. 9.1202 (1968). 
'M. 1. Ablowitz. D. 1. Kaup. A. C. Newell. and H. Segur. Stud. Appl. 
Math. 53. 249 (1974). 

6 A. Lenard (unpublished); C. S. Gardner. 1. M. Greene. M. D. Kruskal. and 
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recursion operator for an arbitrary scattering problem. We 
also constructed, for the eigenvalue problem (2.8), a Hamil
tonian structure, as well as several isospectral flows. 

The Miura transformation (2.6) which relates the Bous
sinesq system (2.2) to the modified system (2.) ,) may also be 
used to relate their Hamiltonian structures, in the manner 
described in I. However, starting from (4.12) we do not gen
erate the usual Poisson bracket for the Boussinesq equation, 
but the "second" Hamiltonian structure discussed by Ku
pershmidt and Wilson. 16 

The methods of Secs. 3 and 4 are applicable to any sim
ple Lie algebra; for sl (2,K) the usual recursion operator and 
squared eigenfunction equations discussed by Ablowitz et 
al. 5 are generated. In the case of the Boussinesq equation this 
relationship between the adjoint representation and the 
squared eigenfunctions has been noted by Flaschka. 17 

The results of Sec. 5 can be generalized, not only to 
sl (n,R), giving Klein-Gordon equations related to the Toda 
lattice, but also to any simple Lie algebra, giving systems 
related to Bogoyavlensky's'8 generalized exponential 
lattices. 19 

APPENDIX 

Throughout this paper the following basis is used for 
sl (3,R): 

R, = (~ ~ ~) R2 = (~~ ~) 
1 0 0 0 0 -1 

R, ~ G ~ I ~ I) R, ~ G ~ I ~) 
R, ~ G ~ 2 D R, ~ G ~ ~ I ) 
R, ~ ( ~ I ~ I D R, ~ G ~ D 

R6 R7 Rg 

-R7 -3R2 0 
R6 R7 +2Rs R7 
2Rs -3R2 -3R2 

-R2 2R, -R3 
2R J -R3 3R4 -3R4 
0 -R5 R5 

0 3R6 
0 

R. M. Miura. Commun. Pure App. Math. 27. 97 (1974); P. J. Olver. J. 
Math. Phys. 18. 1212 (1977); H. H. Chen. Y. C. Lee. and C. S. Liu. Physica 
Scripta 20. 490 (1979). 

7 A. P. Fordy and J. Gibbons. "Integrable nonlinear Klein-Gordon equa
tions and Toda lattices." To be published Comm. Math. Phys. 

"V. I. Arnol'd. Mathematical Methods a/Classical Mechanics (Springer. 
New York. 1978). p. 319. 

9D. J. Kaup and A. C. Newell. Proc. R. Soc. London. A 361. 413 (1978). 
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The lump solutions and the Backlund transformation for the three
dimensional three-wave resonant interaction 
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A Backlund transformation is found for the three-dimensional three-wave resonant interaction 
and ~rom it: ~-lump exact solutions may be constructed. The one-lump solution is analyzed in ' 
~etaIl,. ~~d It IS ~hown that it describes such effects as pulse decay, upconversion, and explosive 
Instabilities, all In three dimensions. 

PACS numbers: 02.30.Jr, 03.40.Kf 

I. INTRODUCTION 

Since the general initial value problem of the three-di
mensional three-wave resonant interaction (3D3WRI) has 
recently been completed, lone may now turn his attention to 
see how one may make use of this method of solution. Obvi
ously, one would seek first to exploit the simplest classes of 
solutions. These are called "lump" solutions, the first ones of 
which were found by Zakharov2 and later by Craik. 3 They 
were then rediscovered by Cornille4 from his integral equa
tions, and were also noted to arise from the many and varied 
inverse scattering transforms associated with the 
3D3WRI. I

•
5 Following a suggestion by Professor Corones,t' 

it was soon discovered that the complicated machinery re
quired for the general solution of this problem was not need
ed if one was willing to only generate new solutions. Of 
course, to solve an initial value problem you still needed this 
machinery. But if one would only seek to investigate special 
solutions, then an old observation made by Professor Cor
ones,6 would allow one to almost immediately construct the 
Backlund transformation for these equations, from which 
these special lump solutions could be quickly generated. 

These lump solutions in three dimensions are not analo
gous to the soliton solutions from one-dimensional inverse 
scattering theories, although they are similar in some re
spects. First of all, when the envelope profiles are required to 
be integrable, and square integrable in three dimensions, the 
scattering data for the 3D3WRI has been shown to consist of 
only a continous spectrum, with no bound states allowed. 1.5.7 

On the other hand, soliton solutions in one-dimensional in
verse scattering theories always correspond to a pure bound 
state spectrum, with the continous spectrum being distinctly 
absent. Furthermore, solitons always have a relation be
tween amplitude and width, so that only one is independent, 
and with a distinct shape or profile. But lump solutions have 
no such relation between amplitude and widths, and the pro
file shape can be quite arbitrary. Thus in three dimensions, 
we have much more freedom in shaping and forming lump 
solutions than was possible with one-dimensional soliton 
solutions. 

However, there are also similarities. The one-dimen
sional soliton solutions always have a closed form solution, 
since the kernels in the one-dimensional inverse scattering 
equations were separable. The same is true for these lump 
solutions in three dimensions, in that the kernels are also 
separable, again allowing closed form solutions. In fact, this 

is how one can define a lump solution. And as one could 
construct N-soliton solutions, so can one also construct N
lump solutions. Furthermore, N-soliton solutions can be 
constructed from a Backlund transformation, and as we 
shall show here, the same can be done for N-Iump solutions. 

These N-Iump solutions are important for another rea
son too. Niznik has shown that any set of potentials (enve
lope profiles) can be approximated to any given accuracy by 
a suitably chosen N-Iump solution. x Thus, many physical 
situations can therefore be reasonably well approximated by 
these N-Iump solutions, at least for a finite time. The latter 
condition is necessary, because Niznik's proof is only valid 
for a given instant of time, and in general one would not 
expect such an approximation to remain valid for all time. 

What we shall do in this paper is to derive the Backlund 
transformation for the 3D3WRI, showing how one may con
struct an N-Iump solution, and shall briefly discuss these 
solutions. Then we shall use the one-lump solution to ana
lyze the collision of envelopes in the positive and negative 
energy cases. What we shall find here are solutions illustrat
ing pulse decay, upconversion, and explosive singularities. 
These effects in three dimensions are shown to be both analo
gous and different from the corresponding effects in one
dimensional solutions. 9 

II. THE BACKLUND TRANSFORMATION 

As discussed by Corones,6 one way to find a Backlund 
transformation is to simply assume that one exists of the 
form 

q' = f(q,Q')' ), (2.1) 

where q is a known solution of the nonlinear system, q' is to 
be a new solution, Q is the pseudopotential (s), and A is the 
eigenvalue (if one is present). One now simply requires q' to 
be a solution of the nonlinear system, which then can deter
mine what the functional form for fmust be. 

Well, the same basic idea also works for the 3D3WRI, 
as we shall now illustrate. The nonlinear equations are 

aqi •• 

a
- = Yiqjqk' (2.2) 

Xi 
where i,j, k are cyclic and equal to (1,2,3), qi is the ph enve
lope, Xi is the ph characteristic coordinate, defined by 

a 
-= -a -v·v 
aXi I" 

(2.3a) 
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where v, is the group velocity for the l~h envelope. The y, in 
(2.2) carries the sign of the coupling constants, and we as
sume the y's to be real and scaled to unity in magnitude. 

We use the characteristic coordinates because of the 
resulting simplifications in the analysis. From (2.3) one can 
obtain the transformation from characteristic coordinates to 
space-time coordinates. Of course, by (2.3a), we only have 
three characteristic coordinates, and to complete the trans
formation, we must supplement (2.3a) with 

(a, + V,·V)X4 = 0, (2.3b) 

which defines a fourth coordinate. A solution of (2.3) for x 
and f as functions of X, and X 4 is 

3 

X= - Iv,x, +nX4' 
i= I 

i= 1 

(2.4a) 

(2.4b) 

where n is a unit vector parallel to (VI - v2) X (V2 - vJ), and as 
such, makes an equal angle with all three group velocities 
(i.e., - vl·n = v2·n = vJ·n). Note that when we keep any two 
characteristic coordinates fixed, and let f_ ± 00, then the 
free characteristic coordinate approaches + 00. 

As far as (2.2) is concerned X 4 is like a dummy coordi
nate, since no differentials with respect to it occur. Thus, in 
solving (2.2), we may keep X4 fixed, then let X4 take on an
other value, solve (2.2) again, etc. Thus, since X 4 is a dummy 
coordinate, we shall ignore it from now on. 

The scattering problem for (2.2) is 

ad', = Ykq;¢k' (2.5a) 

a'¢k = y,qj¢" (2.5b) 

where in (2.5), i,j, k are still cyclic, giving six equations alto
gether. Equation (2.5) has three conservation laws, which are 

a,(Yk¢:¢k)=ak(y,¢;¢,), (2.6) 

and a consequence of these, is that a function D exists such 
that 

aiD = - y,¢;¢,. (2.7) 
To find a Biicklund transformation, we now assume 

that we can find three functions, ii I ,iiI' and ii" where 

(2.8) 

and such that these functions will then satisfy (2.2). Using 
(2.2), (2.5), and (2.7), it is rather simple to show that such can 
be done, and that 

(2.9) 

is one such transformation, provided D is real. With (2.9), 
one may now generate new solutions of (2.2) from old solu
tions. Given any solution of (2.2), one constructs ¢, from 
(2.5) and D from (2.7). Then these functions inserted into (2.9) 
will give a new solution. 

In particular, we may start with q, = 0, in which case 
:ve obtain a one-lump solution. The solution of(2.5) and (2.7) 
IS then 

3 

D=o+ Iy,G,(x,), 
i= t 
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(2.1Oa) 

(2.1Ob) 

where {j is some real constant, and 

(2.11) 

In (2.10), we may, without loss of generality, assume 
{j = ± 1, since (2.5) is linear in ¢' and only the ratio of 
¢;¢kID is significant. Furthermore, if we note that (2.2) and 
(2.5) are invariant under the change of the signs of all the q's 
and y's, we may also choose {j = + I. which we shall do. 

Then from (2.9) and (2.10), we have the one-lump solu
tion as being 

qj =g;gk ID, 

where 
3 

D= I + Iy,G,. 
i= I 

(2.12a) 

(2.12b) 

Note that in (2.12), g, is only a function of X,. and similarly 
for G,. 

Given the above solution, one may proceed to obtain a 
two-lump solution. Denoting theone-lumpDin (2.12)by Dg , 

then the general solution of (2.5) is now 

¢, =h,(x,)+g,FIDg, (2.13) 

where 

(2.14) 

with TJ being some constant. The solution of (2.7) is then 

D=D/t -F-FIDg' (2.15) 

where 
3 

Dh = I + I y,H,(x,), (2.16a) 
i= 1 

(2.16b) 

This gives the two-lump solution as being 

qj = (j/(DgDh - F*F), (2.17a) 

where 

qj = Dhg;gk + h ;gkF + hkg;F * + Dh h ;hk. (2.17b) 

Although we do not now have a general proof, it seems fairly 
obvious that by this procedure one may generate an arbitrary 
N-lump solution. 

Let us now consider the simple one-lump solution given 
by (2.11). The simplest form is when one of the q's is zero. If 
we choose g I = 0, then 

ql = g;(x2)g3(x3)1D(x2,X3)' (2.18a) 

q2 = q3 = 0, (2.18b) 

which is a trivial solution of (2.2). It has only one nonzero 
envelope, and thus corresponds to a freely propagating enve
lope without any interactions. And in the absence of any 
interactions, it travels along its characteristic, X I without 
any change (Le., it is independent of X I)' It's profile and shape 
is determined by two independent functions g2 and g3' one 
for each free dimension. (Actually, g2 andg3 will also depend 
on X 4' but as stated before, we shall ignore this dependence 
since it can be understood that all functions and parameters 
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can always depend on X 4') Note that these functions are com
pletely arbitrary; thus there is a large amount of freedom in 
shaping this pulse. However, the shape is not totally arbi
trary, because the functional dependence of q I on X 2 and X 3 is 
required to be of the form of a simple product, except for the 
terms in the denominator. 

When all theg's are nonzero in general, we have nontri
vial interactions and solutions with the general solution be
ing given by (2.12). To obtain the asymptotic initial profiles 
(the profiles as t_ - 00) according to (2.4b), we take the 
limit of the corresponding characteristic coordinate going to 
+ 00. Thus, to get the initial profile for g I' which we shall 

designatebyQ" weletx,- + 00 in (2. 12) for (i,j,k ) = (3,1,2) 
giving, 

QI =g;(x3)g2(x2)/[1 + Y2G2(x2) + Y3G3(x3))' (2.19a) 

Similarly, the other initial profiles are 

Q2 =g;(x1)g3(x3)/[ 1 + yIG1(x\) + YP3(x3)], (2.19b) 

Q3 = g;(x2)g1(x\)/[ 1+ yIG1(xJ! + Y2G2(x2))' (2.19c) 

Again, one should note that we have a large degree of flexi
bility in shaping anyone profile in (2.19). However, after the 
first one is shaped, say Q3' then gland g2 have been specified, 
and only g3 is left arbitrary. Now, we are only free to specify 
"one-half," of another profile. So for the general one-lump 
solution, we may only shape "one and one-half" profiles ar
bitrarily, subject to the product form in (2.19). Even with this 
restriction, one can still obtain useful information concern
ing the nature of the interactions in the 3D3WRI, as we shall 
illustrate later. 

One can similarly obtain the final profiles, designated 
by Qi' by taking the limit of t_ + 00 in (2.12). This gives 

~ =g;gkl(l +Yjrj +YiGi +YkGd, 

where 

(2.20) 

(2.21) 

Lastly, we should comment that the two-lump solution 
given by (2.17) has six arbitrary functions, whereas the one
lump solution has only three. Thus, with a two-lump solu
tion one may be able to shape the asymptotic initial profiles 
independently, instead of only "one and one-half', as is the 
case for the one-lump solution. However, for now we shall 
only concentrate on the one-lump solution in spite of the 
restrictions, due to the simplicity. 

III. ONE-LUMP INTERACTIONS 

In this section, we shall investigate the range ofinterac
tions available in the one-lump solutions. What we shall do, 
in as far as is possible, is to specify the initial actions in the 
asymptotic envelopes, and determine via the one-lump solu
tion what the final actions must be. In general we will not be 
concerned with what the exact initial shape or form is. We 
will only be interested in how much action is in the envelope. 
As we shall see, although the shapes are cross-correlated as 
in (2.19), the actions are not, and can be specified indepen
dently. Thus due to this simplification, it is well worthwhile 
to study this case. 
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We define the action in the /h envelope A j by 

Aj(t) = f~ '" dx f~ '" dy f~ c<> dzq;qj' (3.1) 

In order to evaluate the above integral, we transform to char
acteristic coordinates. Directly from (2.4) for t constant, one 
can show that 

dx dy dz = J dX, dX2 dX4 

= J db dX3 dX4 

= J dX3 dX\ dX4 

where 

J = I(v\ - V2)X(V2 - v3 )1. 

Thus (3.1) becomes 

Aj(t) = J f~ '" dX4aj(x4,t), 

where the "reduced action" aj is defined by 

(3.2) 

(3.3) 

(3.4) 

aj(x4,t) = f~c<> dXif~oo dXkq;qjlxj~-t-x,-xk' (3.5) 

In practice, it is impossible to evaluate (3.5) when 
Xj = - t - Xi - Xk' However, if instead we define 

aj(x4'Xj) = f~ 00 dxJ: 00 dXk q;qj, (3.6) 

and since as t_ ± 00, qj becomes independent of Xj and we 
have 

aj(x4,t- ± 00) = aj(x4'Xj- + 00), (3.7) 

thus allowing us to evaluate the initial and final reduced 
actions from aj • In fact, from (2.11) and (2.12), we have the 
closed form solution 

a j = YkYkltyJj, 

where 

(I + Yiri + Ypj)(1 + Ykrk + yjGj ) 
p= . 

J (I + yjGj )(l + YiFi + Ykrk + yjGj ) 

(3.8) 

Directly from this, we have that the asymptotic initial re
duced action ajo is 

ajo= YiYk In[(1 + Yiri)(1 + Ykrk)/(l + Yi + r i + Ykrk)]' 

(3.9) 

and the final reduced action ajJ is 

ajJ = ajo + YiYklna, 

a= 

(3.10) 

(1 + y\r\ + Y2F2)(1 + y1r\ + Y3F 3)(1 + Yzr 2 + Y3r3) 
(I + y\r\)(1 + Yzr 2)(1 + Y3F3)(1 + y\F\ + Y2F2 + Y3F3)' 

(3.11) 

Note that up to a sign carried by Yi Y k, the change in the 
action is the same for all three envelopes, in agreement with 
the three conservation laws of action, which are 

(3.12) 

Now, according to (3.9), the initial reduced actions area 
function of the three r's, and one can also invert this to 
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obtain the r's in terms of the initial reduced actions. To do 
this, one first defines 

mj = [YiYk - YiYkexP( - YiYk ajo)f I2, 

which is always real, and for ajo <1, 

( )112 mj"--+ ajo . 

From (3.9) and (3.13) one can show 

r/(l + yjrj ) = mimk/mj . 

(3.13) 

(3.14) 

(3.15) 

One should note that no nontrivial solution exists when any 
one of the reduced actions is chosen to be zero. This is a 
consequence of using the one-lump solution. However, we 
may choose any reduced action to be as small as desired, but 
not zero, as long as a physical solution will exist for (3.15). 

Assuming that a physical solution does exist for (3.15), 
0" as given by (3.11) becomes 

(1 - Y2Y3m~)(1 - Y'Y3m~)(1 - Y'Y2m~) 0"=----------------------------------------
1 - Y2Y3m~ - YIY3m~ - YIY2m~ + 2YIY2Y3m l m2m3 

(3.16) 

Then from (3.10), (3.13), and (3.16), one finally obtains 

mJf = (m) - Yjmimk)2/(1 - YjYkm~)(1 - Yiyjmi), 
(3.17) 

where mf is that value of m corresponding to the final value 
ofthe reduced action, as given in (3.13). We shall now consid
er the two possible physical cases. 

A. The positive energy case 

When all envelopes have a positive energy one of the y's 
must differ in sign from the other two,9 and that correspond
ing wave then has the largest central frequency. Without loss 
of generality we shall choose this wave to be wave number 1, 
and thus we have 

YI = - Y2 = - Y3" (3.18) 

We still have a freedom in choosing the sign of YI' since we 
set the value of {) in (2.1Ob) equal to + 1, and as we shall see, 
changing the sign of YI will give a different solution. 

In order to orientate ourselves, we first list out the val
ues for mJand r j • From (3.13) 

mi = 1 - e- a
,,,, thus O<m l < 1, 

m~ =eo'''_I, thusO<m2 <00, 

thus 0 <m3 < 00, 

and from (3.15), 

r l = m2m3/(ml - y lm2m3 ), 

r 2 = m.m3/(m2 + y.m 1m3), 

r3 = mlm2/(m3 + y,m,m 2 )· 

(3.19a) 

(3.19b) 

(3.19c) 

(3.20a) 

(3.20b) 

(3.20c) 

Note that by (3.19), as the initial reduced actions are in
creased, the values of m increase also, and that m I must be 
bounded from above by unity, while m 2 and m3 are un
bounded. From (3.20) we shall obtain the allowed range of 
the initial reduced actions ifthe collision is to be represented 
by one-lump solutions. 

First we shall consider the YI = + 1 case. Then for r 1 

to remain positive and finite we must require 
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and then (3.17) becomes 

mil = (m l - m2m3)2/(1 + m~)(1 + m~), 
m~1 = (m2 + mlm3)2/(1 - m~)(1 + m~), 
m~1 = (m3 + m,m 2f/(1 - mi)(1 + mil, 

(3.21) 

(3.22a) 

(3.22b) 

(3.22c) 

When m 1 >m2m 3 this solution corresponds to a decay of the 
high frequency pulse ql into the two daughter waves q2 and 
q3' To illustrate this, we shall assume m 2 = m 3, and then 
from (3.19) and (3.22) we find that 

which for a 10-00 and a2o<1 gives 

a 1/- - In(2a2o ), 

(3.23) 

(3.24) 

so that the final action in a very intense high frequency 
pump, will be determined solely by the initial actions in the 
daughter waves. This is illustrated in Fig. 1, where we have 
plotted loga1/vs loga 1o for various values of a20 = a30• The 
main feature to note is that as a 10 increases (for a given value 
of a20 = a30), all remains equal to a lO (i.e., no depletion oc
curs) until a critical value of about - In(2a2o) is reached, at 
which point, all additional action in the pump beyond this 
critical value is dumped into the daughter waves. Note that 
this is analogous to the soliton decay case in the one-dimen
sional 3WRI.9 However, there the critical value depended 
essentially only on the absolute area under the profile of the 
pump itself, whereas here, it depends on the amount of ac
tion in the perturbing daughter waves. 

This phenomena of pump decay would be expected to 
hold true even if the three pulse profiles were not one-lump 
solutions because all that is basically happening is that the 
daughter waves are traveling through the pump, and at the 

1.0 

0.8 

0.6 

CI 0.2 
o 

0.0 

-0.2 

-0.4 0.0 

- 5.0 

-4.0 

- 3.0 

- 2.0 

log a20 =-1.0 

0.4 0.8 1.2 1.6 2.0 
log a10 

FIG. I. The decay case. An initially intense high frequency pump of re
duced action ata will decay to a final reduced action of a t!_ depending on the 
initial reduced actions (a 20 = a30 ) in the daughter waves. 
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critical value, the growth rate has become equal to the rela
tive pulse width allowing depletion to occur. Beyond this 
simple picture our result confirms what one would expect. 
Namely, the relative depletion becomes more and more as 
the initial action in the pump is increased. 

There is another region of this solution where m I ap
proaches m 2m 3 from above, and from (3.22a), one can see 
that for this, virtually total depletion of the pump can occur. 
But we do not believe this feature to be a general feature. 
Rather, we consider it to be a special property of I-lump 
solutions, and in general it should not occur for general 
pUlses. 

When Y 1 = - 1 we have the opposite of decay, which is 
upconversion. Without loss of generality, we may assume 

m 3">m Z' (3.25a) 

in which case the allowed physical parameter space, from 
(3.20), is 

m 1 <m 2/m3, 

and (3.17) becomes 

mIl = (ml + mzm 3)2/(1 + m~)(1 + mn 

m}, = (m2 - m!m3)2/(1 - mi)(l + m~), 
m}, = (m3 - m 1mt!2/(l- m~)(l + m~). 

(3.25b) 

(3.26a) 

(3.26b) 

(3.26c) 

Ifwe again consider the case where m 2 = m 3 , then (3.25) 
becomes trivial and no restrictions are placed on our param
eter space. Then 

ea
,! = e2a'''/[(1 - m 1)(2ea

", - 1 + ml)), 

and for azo-oo with a lO<l, we find 

al~20 -ln2, 

while in the limit of a 10-+0 and a2()-+O we find 

(3.27) 

(3.28a) 

alf-(a20 + (alO)//2].Z (3.28b) 

Equation (3.28) gives two important limits for the final ac
tion in the pump. In Fig. 2, we have plotted loga lf vs logazo 
for various values of loga 10' The main features are that as 
azo-O, a If~a 10' so that no conversion has occured. Then as 
azo increases, when it reaches the critical value of 
a20~(alO)I/2, upconversion starts to occur with a lf rapidly 
approaching the critical value given by (3.28a). Again, this 
feature is similar to that which occurs in the one-dimension
al3WRVexcept that there the critical value depended only 
on the absolute areas under the daughter profiles, whereas 
here it depends only on the amount of action in the high 
frequency pump. Still, for large amounts of action in the 
daughter waves, an almost total upconversion can occur. 

B. The negative energy case 

The only other case which differs from the above is 
when the high frequency wave is a negative energy wave, in 
which case 

(3.29) 

Now, the corresponding expressions for the m's and the r 's 
are 

thus O<mj < I, (3.30) 
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FI? 2. The upconversion case. Two interacting daughter waves of reduced 
actJo~ a20 = a 30 Interact and pump energy into the high frequency wave, 
creating a pump wave of final reduced action a If from a 10' 

rj = mimkl(mj - rlmimd, 

while (3.17) becomes 

mJf = (mj - rlmimd/(1 - m7)(1 - m~). 

(3.31) 

(3.32) 

When YI = - 1 (3.31) gives no restrictions on the pa
rameter space, so we shall handle this solution first. By 
(3.30), if the final reduced actions are to be real then mJf < 1, 
which by (3.32) requires 

mi + m~ + m~ + 2m 1m2m3 < 1. p.33) 

If this requirement is not satisfied by the initial reduced ac
tions, then a singular solution will develop with all three a· 's 
becoming infinite at some finite time. This can be verified 
from (2.12). A similar result was obtained in the one-dimen
sional case.9 However, here the system seems to be linearly 
stable, since if m2 and m3 become infinitesimal, then ql is 
only unstable for m I infinitesimally close to unity (i.e., 
alO-oo). 

In Fig. 3 we show this stability region for the case where 
a20 = a30• In this case, the stability line from (3.33) is deter
mined by 

eO"'=2/[1 +(I_e- a ",)1/2]. 

As a 10-0, (3.34) gives that 

a 2o-ln2 - (a 1o)1/2, 

while as a20-o we have 

(3.34) 

(3.35a) 

a 10- -In(4azo). (3.35b) 

Ifwe consider ql to be the pump and q2 and q3 to be the 
daughter waves, then (3.35) and Fig. 3 show that once the 
action in each of the two daughter waves has exceeded ln2, 
the solution will be unstable for any value of the action in the 
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FIG. 3. The negative energy case for a20 = a30• When the initial reduced 
actions lie outside and above the curve, the solution will always become 
singular in a finite time. All solutions under the curve are stable. 

pump. On the other hand, as the daughter waves become 
infinitesimal, a large pump is stable until its action exceeds 
the value in (3.35b). Thus in theory, a large negative energy 
pump can be stable, but due to the critical value in (3.35b) 
being logarithmic, even the smallest finite noise level will 
place a practical upper limit on this stability. 

The YI = + 1 solution is stable, although the param
eter space is restricted. Without loss of generality, we can 
take 

m3 >m2>m l , (3.36a) 

in which case (3.31) gives 
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m l >m2m 3' (3.36b) 

Now, we use (3.32) to demand that mIt < 1 gives 

mi + m~ + m~ - 2m1m2m3 < 1, (3.37) 

which due to (3.36) is always satisfied. 

IV. CONCLUSIONS 

With somewhat remarkable simplicity, we have found a 
quite interesting set of exact solutions for the 3D3WRI 
which very nicely illustrate such effects as pulse decay, up
conversion, and explosive instabilities. This was all accom
plished by considering the very simple one-lump solution 
obtained from the Backlund transformation. We would ex
pect that two- and three-lump solutions would provide even 
more interesting results. 
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Starting from a nonlinear system of coupled integral equations for the vertex parts which are 
irreducible with respect to the S-, t-, and u-channel, a power series is found for the full vertex 
function in terms of the vertex part r ° which is irreducible with respect to all channels. The 
problem of finding an expression in closed form remains unresolved, since higher-order products 
in rO are nonassociative. In a simplified model, the mathematical properties of the series seem to 
allow successive rational approximations. 

PACS numbers: 02.30.Mv 

1. INTRODUCTION 

Up to now, all attempts have failed to find a satisfactory 
solution to the problem of constructing a fully crossing-sym
metric vertex function, which plays a central role in the 
Green's function formulation of the many-body theory. 1-5 

The difficulty lies not only in the complexity of an S-, or 
t-channel Bethe-Salpeter equation as such4

.
5 but rather in 

the problem of finding a suitable input for these equations. 
Denoting by r s

, r', and r u the respective inputs ofthes-, t-, 
and u-channel equations, i.e., the irreducible parts with re
spect to S-, t-, and u-channel of the full vertex function r, the 
respective channel equations read 

r = r s + rS·GG·r, 
r = r' + r '*GG*r, 
r= r u +ruoGGor, 

(1.1a) 

(l.Ib) 

(1.1c) 

where dots, stars, and circles indicate the S-, t-, and u-chan
nel connections, respectively, while G denotes the single-par
ticle Green's function. The explicit form of the connections, 
i.e., the appropriate summation and integration over the la
bels and energy variables, is given in the next section. The 
condition that r should obey, say, the two equations (l.la) 
and (1.1b), is actually a requirement on the quantities r s and 
r '. In fact, they have to be determined in such a way that 
there exists a vertex function r which satisfies Eqs. (1.1) 

The question arises as to what the basic quantity is, in 
terms of which r s, r', and r u can be evaluated. Migda}6 
suggested introducing a quantity U) which is s- and t-channel 
irreducible, and deriving a nonlinear integral equation for r 
with U) as input. However, we are not convinced that the 
equation referred to is correct. Furthermore, U) certainly 
contains u-reproducible contributions, and is therefore not a 
suitable candidate for being a basic quantity. Intuitively, one 
would expect the specific part of r, which is irreducible with 
respect to all three channels, to be a proper basic input quan
tity from which all three quantities r s, r', and r u could be 
constructed. 

In this paper we in fact derive a power expansion for r i, 

i = s,t,u, in terms of rO, the vertex part irreducible with re
spect to all three channels. This expansion can be easily re
written as an expansion for the full vertex function r. We 
start from a set of coupled nonlinear integral equations for 
the three quantities r i. In constructing the power series the 

problem is encountered of nonassociative products, which 
originates from the different channel connections. This pat
tern gives rise to certain bracket combinations of an nth or
der term. They can be obtained in a recursive way from the 
bracket combinations which originate from the lower-order 
terms. 

Our approach differs from the more traditional ones in 
that the vertex function is expressed by the basic quantity r 0 

and not by quantities derived from it, as is the case in Eqs. 
(1.1). Since we construct the quantities r s

, r t
, and r u in 

such a way that r obeys Eqs. (Ll), crossing symmetry is 
guaranteed. Traditional approximations start from ad hoc 
expression for either r s or r', and then necessarily lead to a 
noncrossing symmetric vertex function. In our approach, 
even if r ° is chosen energy independent, the resulting r will 
still be crossing symmetric. 

In the following section we set up the nonlinear integral 
equations. The solution, i.e., the power expansion, is con
structed in Sec. 3, while the properties of the series are dis
cussed from various points of view in Sec. 4. 

2. THE INTEGRAL EQUATIONS 

For reasons of symmetry it is obvious that there is no 
fermion vertex with an odd number of external Jines. As a 
consequence any diagram can be reducible with respect to at 
most one channel, since reducibility with respect to two 
channels would require a 3-fermion vertex. Hence r t, which 
is defined to consist of all i-channel irreducible parts 
(i = s,t,u), must contain all globally irreducible parts, i.e., 
ro, and in addition all k-channel reducible parts for k =Ii. 
Since r contains all contributions, the expression 

y' = rS·GG·r = r·GG·r' 
yields all s-channel reducible parts. Similarly, the 
expressions 

r' = r '*GG*r = r*GG*r', 
y" = r"oGGor= roGGor", 

yield all the t-channel and u-channel reducible parts, respec
tively. From the above reasoning we conclude that the three 
relations 

r' = rO + r*GG*r t + roGGor u
, 

(2.1) 
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r u = rO + r.GG·rs + r*GG*r', 

must hold. By definition 

r=ro + r' + r + r", 
which, using Eqs. (1.1), can be rewritten to yield 

r= ~(rS + r' + r u 
- r~. (2.2) 

Inserting this result into Eqs. (2.1) we obtain a coupled non
linear system for the quantities r i. 

To write down this system in a compact form we intro
duce the 3-component quantities 

as well as a two-face operator f:!IJ whose action on vector 
quantities of the same type as X is defined by 

OGGO)G
1

) oGGo Z2. 
o 3 

With this notation Eqs. (2.1) and (2.2) are combined to yield 

X =A -1Af:!IJX +Xf:!IJx. (2.3) 

The nonlinear character of this equation, which originates 
from the implementation of crossing-symmetry, has been 
pointed out for relativistic field equations some years ago.7 

For the sake of completeness we give the explicit ex
pressions for the different channel connections occurring in 
the operator f:!IJ. To do so, we choose the three independent 
energy variables on which all vertex parts depend3 as 

s = Wi + wk = WI + W m , 

U=W1-Wk , 

and list them as Ziklm (s,t,u) where Z stands for any vertex 
part. The energies Wj>''''Wm are the off-shell energies associ
ated with the labels i, ... ,m which refer to a given single-parti
cle basis in which the 4-vertex functions are represented. In 
that same basis we represent the single-particle propagator 
G. For convenience later, we give the spectral representation 

(2.4) 

Thes-, t-, and u-channel connections of two vertex parts 
are then given by3 

Y·GG·Z= -! f ::'i Yikpq(S,z -u,z-t)Gpp,(z- t+~-s )Gqq,( s+~+u -z) 

XZp'q'lm(S,t + U - z,z), 

Y*GG*Z = f -~-zi Y pkqm (z - u,t ,z - S)Gpp{z - _s_+_~ +_u_ )Gqq, (z _ s - ~ + u ) 

XZiq'lp,(Z,t,s + u - z), 

yoGGoZ = - f.!!!.- Y. (z - t ,z - s u)G ,(z-21Ti Ipqm 'pp 

XZq'klp'(Z,s + t -z,u), 

where the summation convention is used. Finally, we men
tion that the symmetry relations to be fulfilled by r, viz., 

r iklm (s,t ,u) = - r ki1m (s,u,t) 

= - rikm/(S, - u, - t), 

must be fulfilled by rO as well. As a consequence, the reduc
ible vertex parts obey 

r:klm (s,t ,u) = - ~ilm (s,u,t ) 

= - r:'kml(S, - U, - t), 

while r' has the same symmetries as rand roo 

3. A POWER SERIES SOLUTION 

We consider as given in Eq. (2.3) the quantities A, i.e. 
rO, and f:!IJ, i.e. G. The question ofthe actual availability or 
rather nonavailability of these quantities, and useful ap
proximations of them, is discussed in the next section. 

The individual terms of a power series solution of Eq. 
(2.3) are expected to be of the form Cn ·Af:!IJAf:!IJ ... Af:!IJA with 
some coefficients Cn • However, this nth order product is not 
uniquely defined, since a higher-order product in f:!IJ is not 
associative. In fact, looking for instance at the third compo
nent of the vector (A f:!IJ(A f:!IJA » we obtain six terms, from 
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which we select one that is typical, viz. 
(r ° .GG.(r o*GG*r ~). This term differs from those gener
ated by the expression «A f:!IJ A )f:!IJ A ); of the nine terms which 
we obtain, a typical term of the third component now reads 
«r°·GG·r~*GG*rO). It is precisely the different channel 
connections, that 

(A f:!IJ (A f:!IJA )=t«Af:!IJA )f:!IJA). 

The proper power series solution must therefore have 
the form 

(3.1) 

where the label m lists all the N n bracket combinations of an 
nth order product in the operator f:!IJ . 

The pattern of the bracket combinations, their number 
N n and the coefficients dnm are determined in an elementary 
way. From Eq, (2.3) we find for the first few powers 

X W) =A, 

X(I) = ~(Af:!IJA ), 

X (2) = ~(Af:!IJ(Af:!IJA)) + ~((Af:!IJA )f:!IJA), 
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n-l + I ((X Irl)qJ (X In - rl)). (3.2) 
r=l 

The last expression yields all the information we need. 
To obtain the number N n we deduce the recursion formula 

n-l 

N,,+1=2Nn + I NkNn _ k , 
k~l 

Nl = 1, 

the solution of which is 

N
n 

= ~( 2n ). 
n n - 1 

From Eq. (3.2) it is obvious that the coefficients dnm 

assume the values 

dnm = (W, 1 <"k<"n. 

The value of k is determined by the specific structure of a 
bracket combination. Since a factor ~ is picked up if and only 
if we operate withA!iJ from the left, k is the number of open 
brackets, with the proviso that accumulated brackets count 
once. Thus, the combination ((( .... (AqJA )i~A ) ..... %'A ) yields 
k = 1, whereas the combination (A qJ(A.%'( ..... (AqJA ))) ... ) 
yields k = n. For intermediate values of k we find more than 
one bracket combination. It turns out that nk' the number of 
bracket combinations belonging to the same k-family, is 

Clearly 

" L nk =N". 
k~l 

The strong interrelationship between the three compo
nents of the vector X, i.e., between the quantities r', r', and 
r u, becomes fairly obvious by this approach. This is of 
course not surprising, as we so determined these quantities 
that each of the Eqs. (1.1) furnishes the same vertex function 
r. The solution r of any of Eqs. (1.1) can now also be given 
by a similar power series using Eq. (2.2). We quote the result, 
which is obtained in a straightforward way: 

r=ro+ ntl mtl ({ro;=*,.u(GG);}:r<'). (3.3) 

where (GG)" (GG)" and (GG)u stand for ·GG·, *GG*, and 
oGGo, respectively. 

To evaluate the N" bracket combinations of nth order, 
the same lines are followed as those developed above, A be
ing replaced by the termrO, and qJ by l:;(GG );. The prime 
on the summation sign indicates an additional rule: Disman
tle a specific bracket combination, and proceed step by step 
from the outside towards the innermost term, in such a way 
that when advancing from a term (GG); to its next coupled 
term (GG )j' all threej-values have to occur when they ap
pear to the left of (GG L while j = i is excluded when these 
terms are situated on the right-hand side of (GG),. 

Two examples from the 42 combinations for n = 5 illus
trate this rule: 
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{[ro L, (ro~. ro)] I [ro I(roIro)]}, 
I JPl I JPl J"PJ 

[ro + ({[(ro ~ro) f.: ro] fro} j;ro)]. 
As a result, the actual number Zn of terms which emerges 
from the N n bracket combinations for r, is given by 

Zn = i 3"+ l--k 2k-1nk' 
k=] 

It should be noted that the left-right asymmetry intro
duced above is only apparent: it is a consequence of our spe
cific definition of the operator qJ. If in Eqs. (2.1) we had 
used the terms r '-GG·r instead of r·GG·r S and proceeded 
analogously in the case of the other terms, the definition of 
qJ would have differed accordingly, with the effect that left 
and right would have interchanged their roles in the above 
discussion. 

4. DISCUSSION 

While the expansion given by Eq. (3.3) constitutes a 
correct solution to the problem formulated by Eqs. (1.1), 
there are still many unresolved difficulties. These can be sep
arated into two groups of problems. 

The first concerns the input quantities rO and G. To the 
best of our knowledge, no equation or any other systematic 
method except the perturbation approach, has been devel
oped making it possible to construct rOo With regard to the 
single-particle propagator G, we recall that it depends im
plicitly on r itself. 1-3 However, the value of Eq. (3.3) lies in 
the fact that it can serve as a starting point of a simplifying 
model, in which ro and G are assumed to be given. This 

approach is similar in spirit to the traditional ones, where r s 

or r' as well as G are modeled in some way, and Eq. (l.la) or 
(1.lb) is then solved. Our approach differs in that we calcu
late r' and r' (Eq. (3.1)] in order to obtain a consistent r. 
There is, however, a price to be paid for this more ambitious 
aim, and this leads us to the second group of problems. 

Even if rO and G assume their simplest possible form, 
i.e., rO is energy-independent and G contains only one left
hand and one right-hand pole with diagonal residues in Eq. 
(2.4), a closed expression for the series (3.3) is extremely 
hard to find. It is to be noted that (3.3) differs completely 
from any series, similar to a geometric series, such as occurs 
in the Neumann series of a linear integral equation. There, a 
solution can at least in principle be obtained by calculating 
the inverse of an operator. Here, as observed by other au
thors in a similar context,8 there does not seem to be an 
inverse operator whose power expansion would produce the 
series (3.3). However, there is some prospect of finding ac
ceptable successive approximations in simple cases. We 
briefly outline the underlying idea. 

Consider the model in which an energy-independent r ° 
is also independent of the labels. We denote this quantity by 
A.. For G we assume the form described in the previous para
graph, where we denote by E and 0 the right-hand and left
hand poles, respectively. The power expansion (3.3) can then 
be written as 
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r= ! A nan (s,t ,u). (4.1) 
n=l 

Except for a 1 = 1, the coefficients an have poles at 

s = 2E + k (E - £5), s = 2D + k (£5 - E), 

t = ± k - £5 + k (E - £5», u = ± k - £5 + k (E - £5», 

~(s ± t ± u) = 2E - £5 + k (E - £5), 

!(s ± t ± u) = 2£5 - E + k (£5 - E), 

with k = O,I,2, ... ,';;[(n -1)/2]. In the expression 
(s ± t ± u)/2, all four combinations ofthe signs are under
stood. The poles listed may be multiple up to at most 
(n - l)th order. These are the only possible singularities of 
an' In the case considered, a finite radius of convergence can 
be established around A = 0 for energy values outside some 
finite domains which contain as inner points the poles 
listed.9 

We now pose the conjecture that the expansion (4.1) 
gives rise to a merom orphic function in the energy variables 
s,t ,u with poles only in these variables and in the combina
tion s ± t ± u, where the pole positions are determined only 
by A and the parameters E and £5. This conjecture is support
ed by results obtained from nontrivial models for r (Refs. 4, 
5, and 10) and from the fact that, in the model considered, 
the two-particle propagators derived from r are known to be 
meromorphic. The latter statement means that the 
expression 

r(s,t ,u)/[(s - t + u -171)(S + t - u -17z) 

X (s + t + u - 173)(S - t - u - 174)]' 

when integrated over any two of the three variables, is mero
morphic in the variable left over. The quantities 17i stand for 
E or £5, depending on the specific matrix entry considered for 
the two-particle propagator. 

Assuming the conjecture to be correct, we can conclude 
that r is meromorphic in the variable A. Let us keep two 
energy variables at some fixed (complex) values and vary the 
third one, say s. The positions of the singularities inA, which 
determine the radius of convergence of the Taylor series 
(4.1), depend in a genuine nonconstant manner on the dis
tance between the actual value of s and the positions of the 
poles occurring in an' if this distance is chosen close enough 
to a pole (otherwise the convergence radius might be deter
mined by the specific choice of the fixed values of t and u, in 
which case we should continue our reasoning by referring to 
one of those variables). 

In the s plane, in turn, we may view the expansion (4.1) 
as Laurent expansions around the poles of an by rewriting it 
in the form 

R x A (r) 

r= I I n +c, 
r=ln=I(S-Sr)n 

wheresr , r = 1, ... ,R, are the poles of an nearest to the origin, 
while C contains all other poles as well as s-independent 
terms. The radii of convergence inside which the Laurent 
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series diverge, depend on A; in fact, our conjecture states 
that, for each r, the singularities on the periphery are poles 
whose positions depend on A. 

Take now a fixed value So of s in the region of conver
gence. In the A plane, we then go, by analytic continuation, 
on a closed loop around a singularity situated on the periph
ery of the circle of convergence, so that we arrive at the same 
A value. In the s plane, this process has the effect that the 
actual poles of r move around the point So, i.e., the situation 
remains unchanged after the loop is closed. Hence the singu
larity in the A plane cannot be a branch point. 

Note that this reasoning does not imply that the func
tion which describes the dependence on A (on s) of the posi
tion of the singularity in the s plane (A plane) has no branch 
point. 

The fact that the expansion (4.1) gives rise to a mero
morphic function in A is an important prerequisite for a suc
cessful approximation by rational expressions in A. Our ef
forts are directed towards this aim. 

Finally we mention that all previous attempts to con
struct an acceptable vertex function are covered by Eq. (3.3). 
In the linear model of Ref. 10 only the bracket combinations 
belonging to the k = n family are taken into account, while 
r 0 and G are replaced by a static term and the unperturbed 
propagator, respectively. From this the RPA or Galitskii 
ladderz is obtained, if only tor s connections, respectively, 
are maintained. An important result of the nonlinearity of 
Eq. (2.3) is that it gives rise to multiphonon propagations. 
This was discussed in Refs. 4 and 5 in an approximate way 
and its importance was demonstrated in applications. 11 

Again, the contributions dealt within the quoted papers con
sist only of selective parts of Eq. (3.3), in such a way that 
crossing symmetry is invalidated. We believe that further 
advances on all the attempts quoted have to start from an 
expression such as that given in Eq. (3.3). 

'A. B. Migdal, Theory of Finite Fermi Systems (Interscience, New York, 
1967). 

2A. L. Vetter and 1. D. Walecka, Quantum Theory of Many Particle Sys
tems (McGraw-Hill, New York, 1971). 

'C. A. Engelbrecht, F. J. W. Hahne, and W. D. Heiss, Ann. Phys. (N.Y.) 
104, 221 (1977). 

4F. J. W. Hahne, W. D. Heiss, and C. A. Engelbrecht, Ann. Phys. (N.Y.) 
104, 251 (1977). 

'w. D. Heiss, C. A. Engelbrecht, and F. J. W. Hahne, Ann. Phys. (N.Y.) 
104, 174 (1977). 

"In his textbook, Migdal discusses only the s- and t-channel equations, 
probably because the t- and the u-channel are very similar. The equation 
referred to is Eq. (1.5.7) on page 119 of Ref. I. 

7J. G. Taylor, Nuovo Cimento Suppl. 1,988 (1963). 
HR. J. Yaes, Phys. Rev. D 2, 2457 (1970). 
"w. D. Heiss (to be published). 
lOW. D. Heiss, J. Math. Phys. 21, 848 (\980). 
"w. D. Heiss, C. A. Engelbrecht, and F. J. W. Hahne, Nucl. Phys. A 289, 

286 (1977). 
C. A. Engelbrecht, F. J. W. Hahne, and W. D. Heiss, S. Afr. J. Phys. 1,41 
(1978). 
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Construction of orthonormal vector sets for atoms and molecules by means 
of recursive variation 

T etsuo Morikawa 
School of Pharmaceutical Science, Toho University, Funabashl; Chiba 274, Japan 

Y. J. I'Haya 
Quantum Chemistry Laboratory and Laboratory for Magnetoelectron Physics, The University of Electro
Communications, Chofu, Tokyo 182, Japan 

(Received 8 September 1980; accepted for publication 21 January 1981) 

It is shown using a recursive variation method that the Schmidt orthonormalized vectors are 
optimal in the sense that the least squared distances are minimized, and that the use of maximal 
squared overlaps yields a Schmidt canonical orthonormalized vector set which corresponds to the 
Lowdin canonical vector set. By introducing the Krylov sequence, the method is applied to the 
derivation of a variational expression for the Lanczos vectors which tridiagonalize any self
adjoint operator. The repeated use of two-step variations is shown to derive a pseudopotential 
which is useful for the calculations of correlated pair functions. 

PACS numbers: 02.30.Wd, 31.15. + q, 03.65.Ca 

I. INTRODUCTION 

The classical Schmidt orthonormalization algorithm 
appears in the literatureJ in such a way that it can necessarily 
construct an orthonormal vector set from a given set ofvec
tors which are linearly independent. Given nonorthogonal 
vectors IOJ), 1(2 )"", the Schmidt algorithm yields a recur
sion formula of the following type for the production of the 
ith orthonormal vector lO'j) (hereafter called the Schmidt 
vector): 

i-I 

10') = (1 - L lO'k ) (O'k 1)IOj )Nj - 112, (1) 
k=J 

i=1 

Nj = <Ojl(1- L lO'k)(O'kl)IOj), (2) 
k=J 

with 

IO' J) = IOJ)NJ- J/2, N J = (OJIOJ)' 

The alternative orthonormalization algorithm is 
known as Lowdin's symmetric orthonormalization meth
od,2 which is expressed as c/ls =9(9 t 9) - J /2, where 9 denotes a 
row matrix 9-(IOJ) 1(2)"') and 9t a column matrix with the 
elements (OJ I. The method, as can be seen from the form of 
c/l.., has such an advantage that the vector set c/l, to be ob
tained belongs to the same symmetry group as the initial 
vector set 9 does3

; that is, it conserves the initial symmetry. 
In the method, however, a disadvantage appears in such a 
way that every newly made vector becomes an admixture of 
all the initial vectors. The Schmidt method, on the other 
hand, produces recursively the ith vector only from the pre
vious vectors, (i - l)th, (i - 2)th,.··, while it destroys the 
natural symmetry properties of the original set. In the pre
sent paper, we wish to construct an orthonormal vector set in 
a recursive manner but in terms of the original vector set by 
making use of the recursive orthonormality-constrained 
variation (ONCY) method. 4 

First, we pay attention to Lowdin's successive orthon
ormalization methodS in which orthonormal vectors are ex
pressed directly in terms of the original vectors 10) 'So Let 

the starting set IIOJ)' I(2),.··,IOj- l) I be denoted by a row 
matrix 1]j _ J and add an extra vector IOj) to it. The ith orth
onormal vector is then expressed as (1 - P'1i ,)IOj)Nj - J/2, 

where P'1; _ J is the projection operator and N, the normaliza
tion constant. The algorithm appearing in the successive 
orthonormalization may thus be regarded as the repeated 
use of the first two steps of the Schmidt algorithm. In order 
to obtain such successively orthonormalized vectors in a 
variational manner, we only have to use the first two steps in 
our recursive ONCY method4 repeatedly.l 

Cook6 divided the given vectors into two sets, a core set 
9c and a valence set 9v ' as 9=(9c 19v), and determined the 
orthogonal sets 1jJc = 9c and 1jJv = (I - Pc )9v' where Pc is a 
projection operator which characterizes the manifold 9c. 
The orthogonality of this type is often called "strong ortho
gonality," the orthogonality between two different groups to 
which electrons of the system are classified. 7 Application of 
the symmetric orthonormalization to each of them generates 
an orthonormal set in which the core set 1jJc (1jJc t 1jJc) - J /2 is not 
contaminated by the valence set 1jJv' It is clear that the es
sence of this procedure is in the application of the Schmidt 
method not to vectors but to vector sets. If we divide 9 into 
(9 J 1921.")' where 9 J, for example, denotes a row matrix with 
the elements I OJj) 's, then the Schmidt procedure is reformu
lated, by applying the Lowdin orthonormalization method 
to vector sets, as 

(i = 2, 3,.··), 

(3) 

(4) 

where 9j,(1" and Nj are matrices. Equations (3) and (4) can be 
expressed in a set form by using a recursive ONCV equation 
formulated in terms of sets, which leads to an important 
application since it fulfils the condition of strong orthogona
lity in the processes of variation. 

One feature of the Lowdin symmetric of orthonormal i
zation is known as the resemblance theorem saying that 
symmetrically orthonormalized vectors I~,j) resemble the 
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original vectors in the sense that they have the least squared 
distances. 5.8 We show first in the following that a similar 
optimal property exists in the Schmidt vectors. 

II. OPTIMAL PROPERTY OF THE SCHMIDT VECTORS 

We recall a method previously called the recursive 
ONCV.4 Given an orthonormal set p=(lpl)lpz)"')' Ipl) is 
first varied into Ip; )=Ip,) + \8p,) which to first order in 
jSpI) leads to 

1,o,)==lp; )(P; Ip; )-I/Z 

= Ipl) + 18p,> - !lp,>(8p,lp,) + (P,18p,»). (5) 

It is obvious that the variation process Ip, )-1,01) maintains 
the normality. Next, if a normal jpz) is given, then the simi
lar procedure IPz)-I,o~) with 

1,0; )==Ipz) + ISpz) - !lpz)(8pzlpz) + (PzISpz)l, (6) 

also maintains the normality, but in general Ip~) is not or
thogonal to Ip I)' This nonorthogonality has its source in the 
arbitrariness of 18pz). If 18pz) is replaced by 
(1 - Ipl) (P.lIISpz), then the resulting vector denoted b} 
1,02) becomes normal and also orthogonal to Ip,) under 
assumption (PIIPz) = O. 

Alternatively, the vector 1,02) can be obtained by the 
following procedure. First, to make Ip; )=jpz + ISp2) or
thogonal to \p,) leads to (1 - Ip I) (p, I) 1,0; ). Then, by nor
malization, one obtains 

(7) 

with 

Nz=(P;1(1-lp,)(P,I)I,02)' 

Note that the process resembles the second step of the 
Schmidt orthonormaIization. Expansion of Eq. (7) in first 
order yields the vector Ip). In this procedure, the order of 
the two operations, orthonormalization and normalization, 
is merely inverted in comparison with the former procedure. 

Continuing such recursive processes for a series of the 
ket-vectors, one arrives at the ith variation: 

Ip,)-I,oI)=lpl) + (1 - I,IPk) (Pk 1l18p;) 
k <i 

(8) 

When the recursive ONCV is applied to the partitioned set 
(row matrix) PuPi=(lpiI) IPi2 ) ... ), P=(P,lp21 .. ·), the follow
ing equation is obtained: 

Pi-Pi=Pi + (1 - I, PkPk t)8Pi - !Pi(8p/Pi + p/8pJ (9) 
k<l 

Here, we feel like adding what follows, which has not been 
mentioned in our previous paper. In the recursive ONCV, 
we have seen that 

PJIPi) = 0, 

and 

(10) 

for j < i, retaining up to first order. We still can work out to 
derive varied vectors p normalized and orthogonalized to 
each other. Substitution of (1 -l:k<ilh) (8h j)lpJ for the 

1187 J. Math. Phys., Vol. 22, No.6, June 1981 

first term Ip;) ofEq. (8) yields 

!Pi>=(l- Ilpk)<OPkl)lpi) 
k<1 

+ (1 - I IPk) (Pk 1)18p,.) 
k<i 

- ~lpJ( (8p;\Pi) + (Pi 18pi») 
= /Pi) + 18p) - ~IPi>(SPilpi> + (PiI8p,.») 

- I IPk)(Sh IPi) + (Pk jSPi»)' 
k<i 

and direct calculation gives (j5j jp,) = 0 and 

(11) 

(Pj IPi) = - (8pj IPi) -1=0, forj d. This procedure is identi
cal with the application of the Schmidt algorithm to a set 
! Ip,.) + 18pi )=Ip;) ,. Since Ip,.) contains all lower order 
variation vectors ISPk)' k < i, characterization of eigenval
ues by use of IPi) will be less easy than that by use of IPi ). 

We now apply the recursive ONCV method to the mea-

sure, squared distances Wdi=1l IPi > -18i >11 2
: 

8'wdi=lIjp,.) -18,)11 2 
-lIlp,) -18,)11 2 

= (Spil( -IBi) + !IPi)(PiIBi) + (Bilp"») 
+ Ilpk) (Pk IBi ), + h.c. (12) 

k<i 

The notation 8 ' is used to distinguish it from the arbitrary 
variation 8. It follows from 8 'Wdi = 0 that 

10'> = 4IPi)(PiIBJ + (Oilp,») + I IPk)(PkIB,.), (13) 
k < i 

since 18pi) is an arbitrary vector. It is easily verified that 
solutions ofEq. (13) on the manifold a are just the Schmidt 
vectors 100i)' Note that solutions of Eq. (13) guarantee nor
mality by the first term and orthogonality by the second 
term ofEq. (13). In a similar manner, we can derive equa
tions for vector sets; 

ai = ~Pi(pitai + aitpi) + LPkPk ta,. (14) 
k<i 

It is thus safely said that the Schmidt vectors are opti
mal in the sense that the squared distances are minimized 
and that the equations 8 'Wdi-G are the variation equations 
needed for the Schmidt vector construction. As mentioned 
above, the Lowdin vectors cl>, are also optimal so as to fit the 
initial vectors as closely as possible in the sense of squared 
distances. It is to be noted that the former is constructed 
recursively and the latter symmetrically. 

Heretofore, we have discussed distances between two 
vectors as a measure. Next, we will investigate properties of 
the Schmidt vector, taking overlaps as a measure. The Low
din canonical vectors9 4>c =4>, U = oun-' /2, where U is a 
unitary matrix which diagonalized the matrix ota, that is 
(ata)U = un, are eigenvectors for the operator 
ao t =~ 1 Bi ) < OJ 1. 5 This is understood from a variational 
point of view that cl>e is optimal in the sense that the squared 
overlaps are miximized. That is, 8 'we = 0 for the measure 

iJ 
More generally speaking, 4>. V is a solution to the variation 
equation t) 'we = 0 provided that V is an arbitrary unitary 
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matrix; cl»c is a specific solution which diagonalizes the oper
ator 66 t . 

A similar relation can be obtained for the Schmidt vec
tor set [ [u;) J. Application of the recursive ONCV, Pi-Pi' 
to the measure of overlapping 

Wci==[(Pi [0;) [2 = (Pi[Oi)(Oi[Pi)' 

yields 

{)'WCi = ({)Pi[I(I- I[Pk)(Pk[)[Oi)(Oi[Pi) 
k<i 

(16) 

-[Pi)(Pi[Oi)(Oi[Pi)l. (17) 

which gives an equation for the unknown vector [Pi): 

(1- I[Pk)(Pk[)[Oi)(Oi[Pi) = [Pi)(Pi[Oi)(Oi[Pi)' 
k<i 

(18) 

A solution to this equation is just the Schmidt vector [Ui)' 
Hence, we can say that the Schmidt vectors are optimized iI, 
the sense of maximum overlapping. The variation equation 
8 'Wci-Q has unitary invariance among [Pk ),s, so that the 
matrix representation of the operator [Oi) (Oi [ with respect 
to [p k )' s can be diagonalized by using the freedom of unitary 
transformation. The vector set [ [ui ) J thus obtained may be 
called the Schmidt canonical vectors. 

III. APPLICATIONS 
A. Variational equation for Lanczos vectors 

As a simple example of application of the recursive 
ONCV equation to construction of orthonormal vectors, we 
consider the Lanczos algorithm. 10 The algorithm produces a 
vector set, hereafter called the Lanczos vectors, which tri
diagonalizes any self-adjoint operator H given. It is then very 
useful for practical calculations in quantum mechanical 
problems, 11,12 since one can easily obtain a diagonalized 
form from the tridiagonal H. 

We introduce the Krylov sequence 13 with respect to 
tOYs into Eq. (12); that is, the ith vectoris constructed from 
the (i - I )th vector by operating H on it. It follows from the 
recursive structure of the Schmidt orthonormalization that 
only the two terms of (Pk [H [Pi) (k = 1,2,..· < i) in Eq. (12) 
remain; H [p k) is expressed as linear combinations of the 
vectors which are lower in order than the (k + l)th vector 
inclusive. 

Then we have 

8 'Wdi = (8Pi [[ - H [Pi- I) + ~[Pi)(Pi [H [Pi-I) 

+ (Pi_I[B [Pi») + [Pi-I )(Pi_I[B [Pi-I) 
+ [Pi-2) (Pi- 2[H [Pi-I) J + h.c. (19) 

The solutions [Aj) for the equations () 'wdj-Q are given by 
the recursion formula 

H [Ai_I) = ([A i - 2 )(Ai _2[ + [Ai_I )(Ai_I[)H [Ai_I) 

+ [A;)N
i 
-1/2, (20) 

Ni being a normalization factor. Equation (20) is a usually 
used form for the Lanczos algorithm I 1-13, and [Ai )'s are just 
the Lanczos vectors. Note that the second term in Eq. (19) 
represents the normalization. Solving [Ai) from Eq. (20), one 
has 
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[Ai) = (1 - [Ai _ I ) (Ai _ I [ - [Ai _ 2) (Ai _ 2[)H [Ai _ I )Ni 1/2, 

(21) 

which is a recursion formula for [Ai) 's. It is easily under
stood that the whole procedure gives rise to a tridiagonalized 
representation for H. 

The method described above leads to a procedure to 
generate orthonormal functions, for example, the Legendre, 
Laguerre, and Hermite functions which are well-known in 
classical mechanics (refer to Ref. 13). To give an instance, if 
e - x be choosen as a weighting function and 
(,,1,0[,,1,0) = SO' ,,1,0 2e - xdx as an inner product, then the set 
[ [Ai) J becomes a function system of Laguerre type. We can 
adopt various optimization methods 14 to solve the variation
al equations () , Wdi-O and construct the Lanczos vectors, so 
that the formulations mentioned above are quite useful in 
actual applications to quantum mechanical problems. 

B. Repeated use of two-step variations 

One can consider a modified algorithm in which the 
first two steps of the Lanczos algorithm are used repeated
ly.15 This procedure can be easily rewritten as two-step vari
ation equations for two sets by means of the recursive ONCV 
in a manner similar to that mentioned above. The resulting 
variation equations have the same properties as the modified 
algorithm has; each iteration yields 2 X 2 matrices so as to 
save spaces for computer storage andto avoid manipulation 
for orthogonalization to the vectors derived in the earlier 
steps, and only one vector corresponding to the lowest eigen
value is derived. Once a vector having lowest eigenvalue is 
obtained, setting a new starting vector so as not to involve 
the first vector as a component, one obtains the second eigen
value and eigenvector by the repeated use of the same algo
rithm. In this manner, the third, fourth,.··, eigenvalues and 
eigenvectors can be found. 

Next, we consider a case when the orthogonality be
tween the known set PI and the set to be obtained plays an 
important part. The problem to be solved is as in the 
following l6: 

w2=tr(t;tH t;)-minimum, 
(22) 

Pitt; = 0, t;tt; = I, as constraints. 

Here, the sets (row matrices) PI and t; may be replaced by two 
ket vectors [PI) and [;). The problem mentioned above is 
reworded in such a way that given PI' optimize W 2 under the 
two constraints with t; as a set of valuable functions (vectors). 
When P I is a core orbital set and t; an assembly of correlated 
pair functions (two-electron functions) of valence electrons, 
the orthogonality condition PI tt; = 0 is just what is called the 
strong orthogonality.7 Evidently, therefore, the second step 
P2-P2 of the recursive ONCV method, 

P2-P2 + (1 - PIPl t)8p2 - ~p2(8p2tp2 + P}{)P2)' (23) 

can be used as t; and applied to the above variational prob
lem. A variational process in which PI is known and P2 is 
varied to P2 has been suggested before, 17 and its practical 
formulation is quite the same as that applied to a many-shell 
model. 18 The only difference is that the latter is applied to a 
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specific shell which one must consider, while the present 
recursive ONCV method is to be applied to each vector 
and/or set one after another. 

In the variational process P2~P2' however, we have as
sumed that the initial set P2 is orthogonal to PI in order to 
obtain the result PI tp2 = O. Starting from nonorthogonal PI 
and P2' a similar variational treatment will become trouble
some. On the contrary, we improve the process P2~P2 in 
such a way as in the following, in order to derive a variational 
equation in which the given P I and an arbitrary set (or vector) 
are involved. Let an arbitrary set (or vector) be 1], then 
(1 - PIP/)1]='I/I turns out to be always orthogonal to PI' 
Adopting the Lowdin symmetric orthonormalization, 12 we 
orthonormaIize'l/l and let it be P2: 'I/I('I/It'l/l)-1/2=P2' Assum
ing 1] receives a variation b1], 1]~1] + b1]='I/I/, we expand 
'I/I'Wt'l/l/)-1/2=P2 to first order: 

P2='I/I('I/It'l/l)-1/2 + b'l/l('I/It'l/l)-1/2 _ !'I/I('I/It'l/l)-I 

X (b'l/lt'l/l + 'I/Itb'l/lNt 'l/l)-I12. (24) 

Replacing '1/1 with (1 - PIPI t)1] in Eq. (24), we obtain another 
form of the recursive ONCV for arbitrary 1] in which only 
the first two steps are taken into account. Since the relations 
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PI t P2 = 0 and p/ P2 = 1 evidently hold, P2 as a function of 1] 
can be used for the minimization of U)2 in Eq. (22). 
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Comments on "Higher order modified potentials for the effective phase 
integral approximation" 

Nanny Froman and Per Olof Froman 
Institute of Theoretical Physics, University of Uppsala Thunbergsv(i"gen 3, S-752 38 Uppsala, Sweden 

(Received 28 February 1980; accepted for publication 23 December 1980) 

It is pointed out that the comparison made in the paper by Floyd, "Higher order modified 
potentials for the effective phase integral approximation," between the expansions introduced by 
Floyd and by the present authors, respectively, is inadequate as a test of the relative merits of the 
two expansions. In his comparison Floyd used our unmodified phase-integral approximations, 
but for the case considered one should instead use our consistently modified phase-integral 
approximations. The numerical results then obtained are in the present note compared with the 
numerical results obtained from the expansion derived by Floyd. 

PACS numbers: 02.60.Jh, 03.65.S 

In the method developed by the present authors (see 
Refs. 1-4 and pp. 126-131 in Ref. 5), a kind of arbitrary
order phase-integral approximations are used which were 
first derived and examined in unmodified form,2.3 but were 
later consistently modified in arbitrary order, both by a di
rect method4 and by a transformation method (see pp. 126-
131 in Ref. 5). The possibility of this consistent modification 
grants our method an important feature of generality and 
flexibility. However, Floydh refers only to the early paper 
where the unmodified approximations were derived,2 and 
disregards the consistently modified approximations, the 
use of which is sometimes essential for the efficiency of the 
method in question. Thus, Floyd's comparison in Sec. III of 
Ref. 6 is inadequate as a test, for the model and the param
eter values chosen, of the effectiveness of his expansion com
pared to ours. 

ing improved results when one proceeds to higher orders of 
approximation. For the values of y considered, it is conve
nient to choose [cf. Floyd's Eq. (5a)] 

Using our phase-integral approximations of the arbi
trary order 2N + 1 in the application treated by Floyd,6 one 
obtains the equation 

I' "t/2IlQmod(X)dX = V1T, Ivi i= 1,2,3, ... , (1 ) 

where Qmod (x), entering also into the expressions for YZIl ' is a 
so far unspecified function, which shall be chosen conve
niently. The first few functions Y21l are 

(2a) 

Y _ I {Q 2 - Q ~Od + 
0-2 2 --6-

- Q mod 16Q mod 

X [5( d~:od r -4Q ~o/ 2~~Od ]}, (2b) 

Y __ ly2 __ 1_..:!:.-(_1_ dY2 ) 

4 - :2 2 4Qmod dx Qmod dx . 
(2c) 

Floyd's use of our unmodified approximations means that 
the expressions for Yo, Y2 , and Y4 in his Sec. III correspond 
to the above formulas (2a), (2b) and (2c), respectively, with 

Qrnod(X)=Q(x)= [a-2ycos(2x)]1/2. (3) 

This is, however, not a reasonable choice, if one wants to 
compare the relative effectiveness of our phase-integral ap
proximations and of Floyd's truncated expansion for yield-

Q () = ( _ W. )1/2 = ( _ 2YCOS(2X))I12 
mod X a 0 a , 1 - lIa 

(4) 

TABLE I. 

r v N a 
or Froman-Froman Froman-Froman Floyd 
exact (unmodified) (modified) 

0 0.095 0.0900 
I 0.13 0.08950551 
2 0.19 0.08954 
3 0.27 0.091 

0.03 0.3 4 0.35 0.12 
5 0.45 0.23 
6 0.56 
exact 0.0895 0.08950556 

0 12.291 12.298 
1 12.2943 12.29461 
2 12.29459 12.294623 
3 12.294623 12.294628 

1.0 3.5 4 12.294629 12.2946305 
5 12.29463094 12.2946317 
6 12.29463196 12.2946325 
exact 12.2946 32 12.294632 

0 20.2747 20.2773 
1 20.27594 20.2760022 
2 20.276000 20.27600312 
3 20.2760031 20.27600331 

1.0 4.5 4 20.27600333 20.27600335 6 
5 20.2760 0336 1 20.276003366 
6 20.276003367 20.276003369 
exact 20.2760 0336 20.27600336 

0 30.2665 30.2677 
1 30.26708 30.26710142 
2 30.2671009 30.267101540 
3 30.26710153 30.267101556 

1.0 5.5 4 30.2671 0155 68 30.2671015580 
5 30.26710155821 30.26710155832 
6 30.26710155835 30.26710155836 
exact 30.26710156 30.26710156 

0.0900 
0.08950548 
0.0895061 
0.08950555 853 

0.08950555 848 

12.298 
12.29475 
12.29480 
12.29466 

12.294632 

20.2773 
20.2760 14 
20.2760 18 
20.2760 0363 

20.27600336 

30.2677 
30.2671033 
30.2671040 
30.26710157 

30.26710156 
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TABLE II. 

r v N aexact - aapprox 

Froman-Froman Froman-Froman Floyd 
(unmodified) (modified) 

0 _ 6.10-3 _ 5.10-4 - 5.10-4 

1 - 4.10- 2 5.10- 8 7.10- 8 

0.03 0.3 2 -1.10- 1 - 3·10-' _ 5.10- 7 

3 - 2.10- 1 _ 2.10- 3 - 5.10- 11 

0 4.10- 3 - 4.10- 3 - 4-10- 3 

1 3.10-4 2·10-' - 1.10-4 

1.0 3.5 2 4·10-' 9.10-6 - 2.10-4 

3 9·10-· 4·10-· - 3·10-' 

0 1.10-3 - 1.10-3 - 1.10-3 

1 7·10-' 1.10- 6 - 1·10-' 
1.0 4.5 2 4·10-· 2.10- 7 - 1·10-' 

3 3.10- 7 5.10-- 8 - 3.10-7 

0 6.10- 4 _ 6.10-4 - 6.10-4 

1 2·10-' 1.10-7 - 2.10-6 

1.0 5.5 2 7.10- 7 2.10- 8 - 2.10-6 

3 3.10- 8 S 1.10- 8 - 1.10- 8 

so that the two kinds of approximations agree in the lowest 
order (N = 0). When our arbitrary-order phase-integral ap
proximations are used in this way, they do not have the same 
restriction to short wavelengths as the JWKB 
approximation. 

In our Table I, the numerical results displayed in the 
columns headed Froman-Froman (unmodified) and Fro
man-Froman (modified) have been obtained from (I) with 
Qrnod(x) chosen according to (3) and (4), respectively. In the 
column headed Floyd we quote from Table I in Ref. 6 the 
results obtained by Floyd by means of his truncated series. In 
our Table II we compare the errors aexact - aapprox of the 
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results obtained in the three ways mentioned above. 
The parameter A is introduced in quite different ways in 

the arbitrary order phase-integral approximations derived 
by the present authors and in the truncated series derived by 
Floyd. Our approximations are expected to be more general 
and more flexible than Floyd's, not only because of the non
perturbative way in which the parameter A is introduced and 
the possibility of adapting the choice of the function Qrnod (x) 
to the particular problem under consideration, but also be
cause the application of our method is not restricted to situa
tions in which there are no generalized classical turning 
points, i.e., zeros of Q ~od (x). See, for instance, a paper by N. 
Froman 7 on a periodic potential, with an application to the 
Mathieu equation. However, in particular cases of a suffi
ciently weak potential (i.e., when r is sufficiently small) and 
when no zeros ofQ~od (x) are encountered, Floyd's truncated 
series should give more accurate results than our phase-inte
gral approximations. See the results for r = 0.03 in our Ta
bles I and II. 

ACKNOWLEDGMENT 

The assistance of Mr. Anders Hokback in evaluating 
the numerical results in our Table I is gratefully 
acknowledged. 

IN. Froman and P. O. Froman, JWKB-Approximation, Contributions to 
the Theory (North-Holland, Amsterdam, 1965) (Russian translation: 
MIR, Moscow, 1967). 

2N. Froman, Ark. Fys. 32, 541-548 (1966). 
3N. Froman, Ann. Phys. (N.Y.) 61, 451-464 (1970). 
4N. Froman and P. O. Froman, Ann. Phys. (N.Y.) 83,103-107 (1974). 
'N. Froman and P. O. Froman, Nuovo Cimento B 20,121-132 (1974). 
6E. R. Floyd, J. Math. Phys. 20, 83-85 (1979). 
7N. Froman, J. Phys. A: Math. Gen. 12,2355-2371 (1979). 

N. FrOman and P. O. FrOman 1191 



                                                                                                                                    

Two-sided Pade approximations for the plasma dispersion function 
G. Nemeth 
Hungarian Academy of Sciences, Central Research Institute for Physics, Computing Centre, H-1525 
Budapest, P.o.B. 49, Hungary 

A. Ag and Gy. Paris 
Hungarian Academy of Sciences, Central Research Institute for Physics, Nuclear Physics Department, 
H-1525 Budapest, P.o.B. 49, Hungary 

(Received 17 June 1980; accepted for publication 7 October 1980) 

Two-sided Pade approximations are determined for the plasma dispersion function. An exact 
closed form solution is given. The convergence problem is considered with regard to the real axis. 
Some applications from the theory of charged particle beams are also given 

PACS numbers: 02.60.Nm, 02.30.Mv 

1. INTRODUCTION 

Recently, analytic approximations to the plasma dis
pen:ion function have received much interest, both for their 
application in numerical analysis, and for dispersion equa
tions for linear wave motion in a plasma, see Refs. 1-4. The 
function is defined by the integral 

.;;1"(s) = -- _e_ dt, Irns>O, 
I f+= -t' 

V1T -= t-s 

or equivalently by the formula 

2'(s) = (iV1T)e- S
' - 2e- s'l'e"' duo 

In this paper we consider the function 

I(t) = S-I e - s'l'e"'dU, t = S2. 

We determine two-sided Pade approximations, namely the 
rationals 

Po + Pit + ... + Pk _ It k - I 
Rk(t) = --------

I +qlt+"'+qktk 

for which the terms of the series of the function and rationals 
agree near t = 0 and t = 00 for as many terms as possible. 

The paper is arranged as follows. In Sec. 2 we give ex
plicit representations for Rk (t) and state some precise results 
on their convergence. We shall show here that the approxi
mations have geometric convergence rates like 1/3 k . The 
proofs are in Sec. 3. Some applications of the results are given 
in Sec. 4. 

2. STATEMENTS OF NEW RESULTS 

For a function g(t) which has the representations 

g(t) ~ I a;f i, (-0, 
i=O 

g(t)~ Ib;f -i-I, t-oo, 
i=O 

the rationals R k (t ) can be defined as 

Rdt)= Pk(t) 
Qdt) 

for which the following two equations are valid, viz. 

(1) 

(2) 

(3) 

(4) 

and 

g(t)-Rdt)=O(t- k - I), t-oo. (5) 

Rationals satisfying both previous conditions are usually 
called two-sided Pade approximations. 

This concept can be generalized by replacing these con
ditions by the more general ones, viz., 

g(t) - R ~ml(t) = Oft k+ m), t-O, 

g(t)_R~ml(t)=O(t -k+m-I), t-oo, 

(6) 

(7) 

where m is an integer. The reason for this is obvious, we take 
k + m terms from the series near t = ° and k - m terms 
from the series near t = 00, respectively. 

We shall see that there exists an optimal choice of the 
parameter m. 

Next, consider the function/(t); it is well known that 

(8) 

l(t)~~Imit -i I t-oo. (9) 
i=O 

Hear (at = ala + I) .. ·(a + i-I), (a)o = I is Pochham
mer's symbol. From conditions (4) and (5) we can get two 2k 

linear equations for 2k unknowns: Po,P I ,..,p k - I ,q I ,q2,.··,q k ; 

1=0,1,2,.··,k-l, (10) 

i=k,k+I,.··,k+m-l, (II) 

i 

~L(~Ljqk-j=Pk-I-i' i=O,I,2,.··,k-m-1. 
j= 0 

( 12) 

First, taking the usual case of m = 0, we state the results 

I(t) - Rk (t) = Sdt )/Qdt ), 

Qk(t) = I.Yd - k;! - k;t), 

S ( ) - k !t k 0: (k l.k 3. ) 
k t - ---]"/" I + , + 2' - t , 

(!)d~)k 

(13) 

(14) 

( 15) 

where 1.71 is the symbol of the confluent hypergeometric 
function. Functions Pk (t) and Qk (t) both satisfy the recur-
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sion relations 

(k 2 -1lYk +, = (k - ~)(k + ~ + t lYk - ktYk _ I! 
k = 1,2 .. ··, (16) 

with the initial conditions 

{

I 

y,= 
1 + 2t 

for for (17) 

Combining these representations we get a more economic 
formula for numerical computation: 

f(t)- Pk(t) = f ~ t
j 

, 
Qdt) j=k mjmj Qj(t)Qj+l(t) 

especially for k = 0 

f(t) = f -...:L.. t
j 

j=o(!)jmj Qj(t)Qj+dt ) 

The first few rationals are as follows: 

1 
R\(t)= --, 

1 +2t 

3 + 2t 
R 2(t) = ----, 

3 + 4t + 4t 2 

15 + 8t + 4t 2 

R3(t)= ----'-----. 
15 + 18t + 12t 2 + 8t 3 

(18) 

(19) 

(20) 

It is interesting to note that many years ago Wynn published 
the continued fraction representationS 

f(t) = ------4-t-2 --

I + 2t - --------,:---
8t 2 

3+2t-----
5 + 2t - ... 

which has convergents exactly the same as R k (t ). 

(21) 

Next, we state our result on the geometric convergence 
of the rationals Rdt). 

Theorem 1: For all t;;;.O the rationals Rk (t) converge to 
f(t) in the order 

(kl) f(t)-Rk(t)=O 2
k

' k-+oo. (22) 

It should be noted that the convergence for small and large 
(not moderate) arguments is higher than the geometric one. 

TABLE 1. The maximal errors E, in the two-sided Pade approximation and 
flk=EkIEk,,· 

k Ek flk 

1 0.2270( - 0) 
2 0.8373( - I) 2.712 
3 0.3468( - I) 2.413 
4 0.1519( - I) 2.283 
5 0.6876( - 2) 2.209 
6 0.3177( - 2) 2.164 
7 0.1489( - 2) 2.134 
8 0.7048( - 3) 2.112 
9 0.3360( - 3) 2.098 

10 O.1612( - 3) 2.084 
II 0.7767( - 4) 2.075 
12 0.3755( - 4) 2.068 
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TABLE II. The maximal errors E~"' in the generalized two-sided Pade 
approximation. 

k m E~nl {E~~IIIE~1/, \l)}l/~ 

3 1 0.9821( - 2) 
6 2 O.2567( - 3) 3.37 
9 3 0.7713( - 5) 3.22 

12 4 O.2455( - 6) 3.15 

Corollary 1: Let us define the maximal error by Ek 

Ek = max V(t) - Rdt )1, (23) 
O.,;;;;t< 00 

then 

lim (Ek J Ilk = l' 
k~", 

(24) 

To illustrate the results of Theorem 1 and Corollary 1 with 
numerical experiments, we give in Table I the computed val
ue of the maximal error Ek and the quantities 

/-tk =EkIEk +,· 
Returning to the general case m =1= 0 we obtained the 

following results: 

f(t) - R ~mJ(t) = s~mJ(t )lQ~mJ(t), (2S) 

Q~mJ(t) = jY,( - k;! - k - m;t), (26) 

rc»r(m + 4)k!tk+ m 
S ~mJ(t ) = ( _ l)m 2 • 

r(k + m + !)r(k + m +~) 

,Y\(k + l;k + m +~; - t), (27) 

fit) -R ~mJ(t) = (-l)mrmr(m +!) 
00 j1tj+ m I 

x~ . 
j~k ru + m + !)rU + m +~) Qtl(t )Qj";! I (t) 

Next, we define the quantities 

E lml- Viti p~ml(t)1 
k - max - ---, 

0.;;,,; ao Q ~ml(t) 

qJ (f3) = /3f3(l - /3)1 - f3 2f3 - I, 0<;/3<; 1. 

Our main result is 

Theorem 2: If lim mlk = /3, 0<;/3<; 1, then 
k~"", 

lim {E ~ml}lIk = qJ (f3). 
k-~co 

Investigating the function qJ(f3), we get 
Corollary 2: 

lim {E ~ml}IIk;;;.!. 
k--'>-oo 

(28) 

(29) 

(30) 

(31 ) 

It means that if m = [k 13], we get the best convergence rate 
of the two-sided Pade approximations to the functionf(t ) for 
k-+oo. 

Some numerical experiments are made to show the 
power of Theorem 2. We give in Table II the values E~ml. 

3. PROOF OF NEW RESULTS 

We shall consider the general case only. In proving 
Theorem 2 we must first establish (26) and (27). From Eqs. 
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(IOHI2) we select a system of linear equations for the un
knowns QI,q2,"',qk 

I (-lY k-I-I 
.L ~(J.) I-j =!L mk-I-I-jQk-j' 
)=0 2j )=0 

1= m,m + 1,···,k - 1, 

k ( _ l)i- j . 

"" Q. = ° 1= k k + 1 ... k + m - 1. .4..' (J.) , , " 
)=0 2 i-j 

This, in a more simple form, is 

k ( _ 1)/- j 

""q. =0 l=mm+l .. ·k+m-1. .4.. J (.1.) , , " 
,=0 2/-j 

From this, with elementary transformations, we are able to 
get the system 

k L U + I)/rU - k - m + ~)Qj = 0, 1= O,I, .. ·,k - 1. 
j=O 

Next, by the orthogonal polynomial method, we solve this 
system 

1'''' u1e - 11 ± Qj ~ r U - k - m + !) du = 0, 
k j=O fi 

1= O,l, ... ,k - I, 

~ q~ ru - k - m + ~) = C.eu ~(uke-U) 
/=-0 } J1 du k

' 

(-k). 
Q. = } 
} j1(~ - k - m)j 

Equation (26) is now proved. To obtain s~m)(t), we must 
compute 

00 k (_lji-I 
L t'LQ/ . 

j = k + m 1 = 0 Wj _ / 

After some transformations we get 

This is (27) exactly. Next we prove (28). From the theory of 

FIG. 1. The function e - x'Lx eU'du and its two-sided Pade approximants. 

( - l)m r (~)r (m + ~)k !t k + m 
Fk = ------~----~------r (k + m + ~)r (k + m + j) 

Summing the terms from k to 00 we get 

p(ml(t) 00 F 

f(t)- Q:m)(t) =j~kQt)(t)~Y~I(t)' 
which is exactly (28). 

In the following we need some asymptotic representa
tion of Qt)(t) for m = (3i, t = ai,i~oo. We investigate the 
integral representations of Q t)(t ) 

1m) _ fir (! - j - m) 1 i e - zt 

Qj (t)- r(~-m) 21TiJ(1+zt+lzi+ldz, 

If Laplace's method is used it is not difficult to show that the 
largest contribution of the integrand comes from point z, 
where z is the root of the equation 

a + (3 I( 1 + z) + liz = O. 

We then get 

lim j ) =f3 -Pe-I-Pal+Pe2azz2(l +Z)2P. 
I

F 1
1
/. 

j-oo Qr(t )Q5~ I (t) 

This term is maximal in a if a = (1 + (3)2 1[2( 1 - {3)]; thus 
z = - (1 - {3)1(1 + (3). For this reason 

• J 

.2 

.1 
III 

hypergeometric functions it follows that functions Q ~ml(t ) .1 

and S ~m)(t) both satisfy the recursion relations .2 

Uk + mf -l]Yk+ 1 = (k + m + ~ + t)(k + m - ~)yk 
- ktYk_I' k = m,m + 1, .. ·. 

Let us consider the difference 

s~m! l/Q~"'l-l - sr)IQ~m) = FkIQ~m)IQ~mll' 

kt 
Fk = Fk _ l , 

(k + m + ~)(k + m - ~) 

therefore 
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.J 

.4 

.5 

.6 

.1 

.8 

.9 

FIG. 2. The function 2.xe - X'ixe"'dU - 1 and its two-sided Pade 

approximants. 
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-4 

-5 ....... ___ .--__ --.;:.... 

FIG. 3. The angular distribution of the charged beam Ro versus Z and its 
two-sided Pade approximants. 

Theorem 2 is now proved. The proof of Theorem 1 follows 
from this for m = 0, {J = 0. 

4. NUMERICAL APPLICATIONS 

The first application is the approximation of the func
tion e - x'f~eu2 du and its derivative. We compute the Pade 
approximants with parameters k = 1, m = 0, and k = 2, 
m = 1, 

x 

respectively. Figure 1 shows the function with its approxi
mants. The second approximant gives a quite good agree
ment in a few terms. In Fig. 2 the derivative of the function 
and the derivatives of the approximants are shown (line I and 
lines II-III): 

8x6 + 156.x4 + 90X2 - 225 

(15 + 12x2 + 4x4f 
Line III again gives the better agreement. It is obvious that if 
higher parameters are taken (Le. higher approximants) we 
can get even closer agreement. Another application is the 
drawing up of constructional curves in engineering.6 The 
function appears in the theory of space charge limited 
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FIG. 4. The increment M versus the reduced axial distance Z and its two
sided Pade approximants. 

beams. Figure 3 shows the angular distribution of the 
charged beam in a periodically focusing system taken from 
Ref. 6. Line I is the exact curve, lines II and III are computed 
by Pade approximants 

15x + 2x3 

respectively. It is easy to see that line III fulfills the engineer
ing requirements. The increment M versus the reduced axial 
distance Z, corresponding to previous approximations is il
lustrated in Fig. 4. In the stability region 1M I < 1 line III 
complies with the requirements of the constructional curve. 
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4B. D. Fried and S. D. Conte, The Plasma Dispersion Function (Academic, 
New York, 1961). 

'P. Wynn, Proc. Kon. Ned. Akad. V. Wetensch. Amsterdam, Series A 65, 
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6J. R. Pierce, Theory and Design of Electron Beams (Van Nostrand, Lon
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The elastic pendulum: A nonlinear paradigm 
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A pendulum with an elastic instead of an inextensible suspension is the simplest realization of an 
autonomous, conservative, oscillatory system of several degrees of freedom with nonlinear 
coupling; it can also have an internall:2 resonance. A fairly complete study of this system at and 
near resonance is here undertaken by means of the "slow-fluctuation" approximation which 
consists in developing the x 2y-type interaction into a trigonometric polynomial and keeping only 
the term with the slowest frequency. Extensive computations showed that up to moderately large 
amplitudes the approximate solutions were virtually as accurate as numerical integrations of the 
exact equations of motion. The slow-fluctuation equations of motion can be completely integrated 
by quadratures. Explicit solutions for amplitudes and phases are given in terms of elliptic 
functions, and can be linked to initial conditions. There exist two branches of purely periodic, 
harmonic, constant-amplitude motions which are orbitally stable but Liapunov unstable. The 
pure suspension motion is Liapunov unstable and remains orbitally stable only up to and 
including a critical amplitude; the standard "method of variational equations" leads to a slightly 
different stability criterion but is shown to be unreliable. In the dynamical neighborhood of the 
unstable pure suspension mode are motions which convert to it after infinite time. When a motion 
has an amplitude modulation minimum at or near zero, a phase reversal of the suspension takes 
place which is shown to be an artefact inherent in the description in terms of amplitudes and 
phases. In addition there is in the pendulum (but not in the exactly soluble system having the 
slow-fluctuation Hamiltonian) a fast phase transient which vitiates the slow-fluctuation 
technique for a few periods around the suspension amplitude minimum; this is the only restriction 
on the method. An appendix outlines formal isomorphisms between the elastic pendulum and the 
process of second-harmonic generation in nonlinear optics. 

PACS numbers: 03.20. + i, 42.6S.Cq 

I. INTRODUCTION 

In more than one degree offreedom, a system with Ha
miltonian of type 

~m(j? + y2 + W;X2 + w;y2) + yx2y 

appears on several counts as the simplest of them all: it is 
autonomous and conservative, it reduces to a plane, harmon
ic oscillator for infinitesimal amplitudes and also for vanish
ing values of y, it remains bound for moderate amplitudes, 
and thex2y-coupling is the simplest which cannot trivially be 
removed by a coordinate transformation. A perfectly plain 
realization of such a system (details in Sec. II below) is a 
pendulum with an elastic instead of an inextensible thread, 
and constrained to move in a fixed, vertical plane. 

This elastic pendulum was introduced by Witt and Gor
elik 1 in an important paper which has frequently been mis
quoted, following Minorski.2 Their interest centered on a 
quasi resonant feature of rather simple origins. The centrifu
gal force accompanying the pendulum swing tugs at the elas
tic suspension twice in every pendulum period; it will thus 
excite the suspension mode, or tend to arrest it when the 
phase relation is the opposite, if the suspension frequency is 
close to twice the pendulum frequency. The resultant energy 
exchange is immediately apparent in a rough table-top ex
periment; it is also familiar as a nuisance3 in the well-known 
beginner's experiment to measure a spring constant dynami
cally by timing vertical oscillations. The pendulum and sus-

'Now at Department of Defense, Fort George G. Meade, MD 20755. 

pension modes seem to behave just like two coupled, har
monic oscillators, seesawing in amplitude. Some 
quantitative observation of the turning points quickly 
shows, however, that the amplitude modulation is not har
monic (see also Figs. land 3 below). Indeed the resonant 
energy transfer is not harmonic but parametric: the suspen
sion motion periodically alters the pendulum length, and 
hence the pendulum period. The process is fundamentally 
nonlinear, and the motion cannot be represented as a super
position of normal modes. 

As the paradigm of a conservative, autoparametric sys
tem with an internal resonance, the elastic pendulum is men
tioned in a number of texts2

•
4 at varying levels. Even home

work problems have been devised.s There is also much 
analytical work, 1,3,6-10 again of differing sophistication. 

We present here a detailed study of the elastic pendu
lum by means of the slow-fluctuation technique first formu
lated by one of us9 which has since been generalized and 
explored 1 1,12 in more depth. Given the considerable volume 
of the existing literature, we feel we should explain why we 
add to it instead of merely appending our principal results as 
illustrations to the general exposition 1 

1,12 of the method. 
The quoted literature l

-
8

,1O contains no stringent nu
merical comparisons between approximations and accurate 
solutions of the equations of motion. Consequently the au
thors cannot do full justice either to their own work or to the 
elastic pendulum. In contrast, we began our studies with 
extensive numerical integrations and thus possessed a reli
able yardstick for checking everything we did later. 
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To our surprise we found that our slow-fluctuation so
lutions approximated the numerical ones with a remarkably, 
in,deed uncannily, small error. We had to conclude that for 
all intents and purposes, and with only minor limitations, 
they were comparable in accuracy to the numerical ones. 
Thus we could confidently use the slow-fluctuation formu
lae much as if they were exact and discuss the elastic pendu
lum in considerable depth. This simple system looks like a 
toy at best, but its behavior is astonishingly complex, with 
many facets of more than academic luster. What we offer is, 
therefore, a numerically accurate, analytical study with 
some aspirations to completeness. 

We emphasize that our standards of accuracy are those 
of the applied mathematician who wishes to compute an os
cillation, say, over a hundred periods with an end error of a 
percent or better in the amplitude and no more than a few 
degrees of arc in the phase. This is a far cry from the needs of 
the design engineer who may well be content with 10% and 
30·, respectively, after only a half-dozen periods. However, 
for the sake of the refined study we had in mind, we judged it 
better to err on the side of pedantry. 

We have also been cautious in the matter of notation. It 
so happens that nearly every feature of the elastic pendulum 
has a close analog in oscillatory systems of more than two 
degrees offreedom. We have, therefore, adopted a somewhat 
elaborate notation in order to facilitate comparisons with the 
general theory of the slow-fluctuation method. 11.12 

II. BASIC SYSTEM PROPERTIES 

Call m the mass of the pendulum bob, k the spring con
stant of the suspension (assumed massless and elastically lin
ear), /0 the suspension length in the absence of a load, and / 
the length under a static load mg. Set 

gl/ = w~ , kim = w~. 

From the definition of k we have 

k (/ - /0) = mg, 

(2.1) 

(2.2) 

and if here we substitute for / and mlk from (2.1) we obtain 

gl wi - /0 = gl wL 
which implies the inequality 

(2.3) 

(overlooked in the literature). If on the other hand we substi
tute in (2.2) for k 1m and g, we obtain 

w~ (/ - /0) = lw~ , (2.4) 

so that the exact resonance 

W 2 = 2wl requires / -;/0 = /14, (2.5) 

a convenient rule for experimentation. 
The problem suggests polar cootP.inates, but they lead 

to very clumsy equations. Oscillatory systems usually are 
best treated in coordinates which would describe nOrlnal 
modes in the absence of any coupling. We use rectangular q I' 
q2 in a vertical plane with q 1 horizontal and q2 measured 
positive upwards; the origin will be placed at the rest position 
of the bob. Only motions-in this plane will be admitted with 
their amplitudes restricted to small values by 
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q~ 1(1- q2f< 1 and Iq211/< 1. 

The exact potential energy 

V = !k {[qi + (/ - q2)2] 1/2 - loY + mgq2 

(2.6) 

can be put into a convenient approximate form by binomial 
expansion and neglect of higher-order terms in accordance 
with the conditions (2.6). The result is6 

V I ( 2 2 2 2) 2 = 2m WI ql + W 2 q2 + rql q2' 

except for a constant which we omit, with 

r = m(w~ - w~ )/2/. 

(2.7) 

(2.8) 

A Lagrangian for the potential energy (2.7) yields at once the 
equations of motion 

(2.9) 

(2.10) 

As described in the Introduction, the suspension mode be
haves as a driven harmonic oscillator (2.10), whereas the 
pendulum (2.9) is parametric. 

The coupling constant (2.8) is always negative, 

(2.11) 

on account of(2.3). Interestingly enough, it cannot be altered 
without changing the system itself. Ifwe wish to alter r while 
keeping m, WI' and W2 fixed, we have only / to vary; but 
because gil = wi we must simultaneously vary g, and then 
Eq. (2.2) shows that we must vary 10 too. Thus an essential 
system parameter has to be changed after all. One must not 
visualize this pendulum r as a "small parameter" or an "ex
ternal perturbation" of the familiar kind which is under con
trol and whose value can be adjusted at will to suit the valid
ity of some approximate technique. 

Of course the x 2y_ type coupling in the potential energy 
(2.7) also arises in many analogous series developments. Well 
known is its occurrence in the vibrational energy of the CO2-

molecule (and of similar ones), where it causes the "Fermi 
resonance" in the infrared and Raman spectrum. 13 Another 
important case, with an extensive literature, is the oscillatory 
and occasionally unstable behavior of a betatron beam. 14 

Then there are many occurrences in celestial mechanics. 8. 15 

And so forth. In all these instances the elastic pendulum can 
serve as a model or guide, provided only its limitations (2.3) 
and (2.11) together with the invariability of r are kept in 
mind. The dominant feature is always the parametric energy 
transfer. In fact, if an equation of motion similar to (2.9) is 
found for some system, the elastic pendulum may have use
ful analogies to offer even in the absence of other similarities. 
An example is furnished by the 1:2 resonances between the 
oscillations of a ship in heave, pitch, and roll which even in a 
nonconservative approximation 16 bear a strong resemblance 
to the pendulum swing parametrically excited from the sus
pension. In a different fashion, by a mathematical analogy 
ansing from the nature of our slow-fluctuation approxima
tion, the elastic pendulum can be related to the process of 
s~('()nd-harm9ftic generation in nonlinear optics, as we show 
later in 'file AppendU. 
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III. NUMERICAL INTEGRATIONS 

In all computations we uniformly adopted the value 
li./2 = 12 rad/sec, which corresponds to a suspension period 
close to! sec. Near resonance the (full) pendulum period will 
then be in the neighborhood of 1 sec, and the pendulum 
length of the order 30 cm,just right for table-top trials. For a 
fair representation of our graphs and numerical data select a 
light coil spring, suspend from a standard laboratory tripod, 
attach a bob of such mass m as to give a vertical period 
around! sec, and lengthen the spring with a piece oftwin~ to 
satisfy (2.S); to detune at will, lengthen or shorten the twme. 
For all choices of twine length, the value of r is automatical
ly determined by (2.8). In the following we quote the chosen 
li./ I in terms of the fixed li./2, or we quote the detuning 
2li./1-li./2=E. 

Using a Runge-Kutta-Simpson technique with vari
able increment, 17 we integrated the equations of motion (2.9) 
and (2.10) for various initial conditions and pendulum fre
quencies li./I' By never letting the time increment exceed 0.01 
sec, we were able to follow the motion satisfactorily over as 
much as 160 sec (or 300 suspension periods). As a check on 
accuracy, we calculated the (known, fixed) total energy from 
the computed solution. We found an energy loss of 0.26% or 
less for the longest runs. Runs of at most 50 sec (Le., up to 100 
suspension periods) usually sufficed; the energy loss in these 
amounted to no more than about 0.1 % in all cases. We 
judged this accuracy adequate. 

Reference 9 contains an archive of graphs displaying 
some of our computations. Here we reproduce three typical 
short runs. 

Figure 1 represents a motion at exact resonance, 
2li.I 1 = li./2' The bob is released from rest 2 cm below and 0.1 
mm to the right of the origin. After about 40 suspension 
periods an almost complete energy transfer into the pendu
lum mode has taken place. The transfer then reverses. Figure 
2 is an enlarged view of the suspension motion near its ampli
tude minimum. It is seen that about one half-period is miss
ing, corresponding to an abrupt change of the suspension 
phase by about 180·. This illustrates the mechanism sur-

suspension 

. : ...... 
-3 

~~feOd"'~~~ 
o 10 20 30 40 

seconds 

FIG. 1. A numerical integration at exact resonance. 2.000 UJ I = UJ 2 . Initial 
conditions: release from rest at 1 = 0 with qlo = 0.01 cm and q20 = - 2.00 
cm (notation as in Sec. V). 
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FIG. 2. An enlarged view of the suspension amplitude minimum of Fig. I. 
Note the zero crossings; approximately one half-period is missing at the 
minimum. 

mised above: the suspension, driven by the resonant centri
fugal tugging, is first arrested and immediately started up 
again undergoing a 180· phase reversal in the process. 

Figure 3 shows a case off resonance, with 1.90Sli./1 = li./2 
orE = 0.09Sli./I' Bob release is from I.S cm below and 2cm to 
the right of the origin. No peculiar features are visible. The 
energy transfer is incomplete but has a regular period. Am
plitude modulation and oscillation are not synchronized; 
from one modulation period into the next the phase is seen to 
differ slightly, but apparently without sudden shift. 

Figure 4 is an example well off resonance, with 
li./ I = 2li.I2/3 instead of the resonant li./2/2. Bob release is from 
1 cm below and 3 cm to the right of the origin. The energy 
transfer mechanism is here quite ineffective. The amplitude 
modulation appears as a mere jitter of the turning points. Its 
period is still quite regular, but it is short and so ~ar out of 
synchronism with the oscillations that the behaVIOr of the 
turning points appears at a first glance a little erratic. 

In these and many other computed cases we let the am
plitudes become fairly large; still consistent with the condi-

+3 . 
suspension 

o 

-3 L-___ --' ____ .L . -- - L . 

'" E 
pendulum 

u 

+3 

o 5 10 15 20 

seconds 

FIG. 3. A numerical integration off resonance, 1.905 UJ I = UJ,. Initial condi
tions: release from rest at t = 0 with qlo = 2.00 em and q,o = - 1.50 cm. 
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+3 [ suspension 

-:~ 
<Jl pendulum 
E 
u 

+3 

~ 0 

-3 

--- I 

0 5 10 15 20 

se cond 5 

FIG. 4. A numerical integration far from resonance, 1.500 W, = ())2' Initial 
conditions: release from rest at t = 0 with q,o = 3.00 cm and q20 = - 1.00 
cm. Note the ineffective energy transfer. 

tions (2.6) needed for the validity of the approximation (2.7), 
but large enough to emphasize nonlinear peculiarities, if any. 
However, large amplitudes showed nothing else than small 
ones. We also computed a number of solutions for initial 
conditions with a nonzero velocity; again, they exhibited 
nothing new. 

IV. THE SLOW-FLUCTUATION METHOD 

Energy transfer between the pendulum and suspension 
modes requires changing phase relations. More formally, we 
may say that nonlinear oscillators (including parametric 
ones) generally have their frequencies dependent upon am
plitude; evidently, amplitude change implies frequency 
change. Some substitution such as 

(4.1) 

with variable Ai' Pi (always Ai >0 for uniqueness of Pi) thus 
becomes unavoidable. 

The introduction of amplitudes and phases doubles the 
number of variables and suggests a Hamiltonian formula
tion. We shall, instead of the qi and the pertaining 

(4.2) 

introduce new coordinates and momenta by the familiar ca
nonical transformation 

qi = (2p;!mWi) '/2 COsiji' 

Pi = - (2mWiPi),/2 siniio 

(4.3) 

(4.4) 

which conveniently converts a harmonic oscillator Hamil
tonian !(p~/m + mw~q;) into WiPi' Note that (4.3) is largely 
(4.1) in disguise with 

iii = w;f + Pi' 

Pi = !mwiA ~. 

According to (4.6) the new momenta are effectively the 
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(4.5) 

(4.6) 

squared amplitudes; this suits our purpose well, for it so hap
pens that the method to be developed yields equations, not 
for the amplitudes themselves, but for their squares. 

In terms of the original rectangular coordinates and the 
momenta (4.2), and with the potential energy (2.7), the Ha
miltonian of the elastic pendulum is 

H (p,q) = (Pi + P~ )12m + !m(wi qi + w~ q~) + yqi Q2' 
(4.7) 

After the canonical transformation (4.3), (4.4), this becomes 

jj (j,ij) = wIl, + W~2 + ji(8piP2)'/2cos2ii,cOsij2' (4.8) 

where 

ji= y(m 3wiw2)-1/2. 

The product of cosines can be resolved into a sum: 

cos2ii,cOsij2 = !COsij2 

+ !cos(2ii, + ii2) + !cos(2ii, - ii2); (4.9) 

consequently the exact Hamiltonian equations of motion 
will also contain sums of terms with trigonometric factors 
having arguments ii2' 2ii, + ii2' and 2ii, - iiz' On account of 
the definition (4.5) these factors can be said to be essentially 
harmonic with frequencies w 2, 2UJ, + W2' and 2UJ, - w 2, re
spectively, because the phasesp, andP2 vary comparatively 
much more mildly than Wit and w 2t, respectively, if for the 
time being we disregard extreme cases like the one depicted 
in Figs. I and 2. 

As the system is most interesting near resonance, we 
assume from now on 

(4.10) 

Then the trigonometric functions with frequencies W2 and 
2w, + W 2 fluctuate much faster than those with frequency E. 
Moreover, they are in the Hamiltonian equations accompa
nied by factors depending only on the momenta, i.e., on the 
amplitude modulation functions Ai which vary slowly, as in 
the typical case of Fig. 3. Hence these rapidly fluctuating 
terms vary rather symmetrically up-and-down, giving a zero 
net effect, and can safely be excluded. Note that the distinc
tion of "fast" and "slow" holds good even at rather large 
detuning E. Suppose E = w/2, i.e., 1. 500w , = W z as for the 
case depicted in Fig. 4; then W2 = 3E and 2UJ, + W2 = 7E, still 
fairly different from E. Thus the < sign in (4.10) may be inter
preted liberally. 

Deferring quantitative justification until Sec. VII, we 
henceforth keep only the last term in (4.9) and replace the 
exact Hamiltonian (4.8) by its "slow-fluctuation" 
approximation 

S(j,ij) = wIl' + W~2 + jiP,(j2/2)'/2cos(2ii, - ii2)' 
(4.11) 

The first pair of equations of motion Pi = - as / aiii is 
p, = 2jip,(j2/2)'/2sin(2ii, - iiz), (4.12) 

(4.13) 

As they are related by pz = - p/2, we have the conserva
tion law 

p, + 2P2 = const = 2a (4.14) 

Ernst Breitenberger and Robert D. Mueller 1199 



                                                                                                                                    

(a;>O, of course). In terms of the amplitudes, by (4.6), 

cuIA~ +2cu~~ =4alm; (4.15) 

this expresses the conspicuous seesawing between joint ex
trema. 18 Next, note that (4.14) may be combined with (4.11) 
into 

s - cu2a = €PI!2 + ypdp2/2)1/2cos(2ql - qz). 

Since the Hamiltonian is conserved, 

S (Ji,ij) = const = E, 

(4.16) 

(4.17) 

~4.16) shows that at exact resonance € = 0 the term with y, 
~.e., the ~uccessor to the nonlinear interaction energy yq~ q2 
III (2.7), IS separately conserved in our approximation. 

In a conservative, autonomous system of two degrees of 
freedom the existence of a first integral besides the energy 
permits complete integration by quadratures alone. 19 First 
eliminate 2ql - q2 between (4.11) and (4.12) by squaring and 
adding, 

(S - CUJftI - cu~2f + p~ 14 = y2p7pz!2, 

and now remove pz and S by means of (4.14) and (4.17) with 
the resultzo 

p~ = - y2p~ + C4 P7 + 2€cJft, - c~ 

= f(Jid, 

where 

C I = 2(E - cup), 

C4 = 2fa _ €2 

(4.18) 

(4.19) 

(4.20) 

(in a slightly unsystematic numbering which is to facilitate 
comparisons with the notation in Ref. 9). The solution of this 
differential equation is the usual 

t - to = f dp/r! (Jitl] 112, (4.21) 

with the sign of the root to be chosen according to the direc
tion of growth of PI: + for increase, - for decrease; the 
resultant PI(t ) is an elliptic function of time (including degen
erate cases). 

It will be convenient to set 

f(Jil) = - y2P(Jitl, 

P (Jil) = (Jil - R 1)(Ji1 - Rz)(Ji, - R J ); 

then comparison of coefficients yields 

RIR2R 3= -c~/f, 

R I + R z + R3 = c4lf· 

(4.22) 

(4.23) 

(4.24) 

Let us first assume C I # 0; the degenerate case C I = 0 will be 
treated in Secs.JX and XI. From (4.23) we see that one of the 
three roots ofJmust be negative, say Ry If the other two 
were also negative, or if they were complex conjugates,f(Jid 
would be negative for all positive PI which is physically not 
possible. Hence only R I' R z real and positive needs to be 
admitted, and then..f;.O holds between R I and R 2• A general 
theorem z I asserts that under these circumstancesp, (t ) is peri
odic between turning points R I and R z, and time-reversal 
symmetric about any of these extrema (with R, = R z a de
generate case yielding constant amplitudes, as discussed in 
detail in Sec. VIII). 
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We standardize further developments by putting the 
zero of the time scale atpi = R ,; thereby (4.21) becomes 

t = ( dp,/[J(Ji,)] liZ, (4.25) 
JR, 

and R I assumes the status of an integration constant which 
eventually needs to be linked to given initial conditions. To 
be precise, we do not make our calculations in terms of an 
initial value PI (to) prescribed at the specified time to. we make 
them in terms of an initial time to(R I) prescribed at the speci
fied amplitUde R I' only for sheer brevity we also write to = O. 
Effectively to becomes an independent integration constant; 
to complete the stratagem we show in the next section how 
R I can be calculated from the special, physical initial condi
tions which correspond directly to the special formula (4.25). 
With RI thus computable from Eq. (5.3) below, the other 
roots follow from (4.23) and (4.24) as 

2R z = - Co + (c~ + 4ci12, 

2R3 = - Co - (c~ + 4c7 )t!z, 

cn =R I -c4/f, c7 =dlfRI' 

(4.26) 

so that the convention PI(O) = R I neatly skirts the chore of 
solving the cubic equation P (Jil) = O. 

The other pair of Hamiltonian equations q; = as lap; is 

ql = 0) I + y(Jiz!2)1/2cos(2ql - qz), (4.27) 

qz = cu} + ~ypd2p})-1/2cos(2ql - q}). (4.28) 

In passing, note that they may be combined into 

2q, - q2 = C + y(JizI2)-1/2(Jiz - P 1/4) cos(2ql - q2)' 
(4.29) 

which corresponds to the fact that the Hamiltonian really 
contains only a generalized coordinate li, = 2ql - q2' While 
these observations help to explain II the existence of the mo
mentum integral (4.14) as arising from some cyclic coordi
nate liz, (4.29) is less easy to integrate than the equations from 
which it originates, whence we leave it alone (except for fur
ther mention in the Appendix). 

Equation (4.28) contains P2 in the denominator. If at 
some time t I the suspension amplitUde vanishes, or almost 
vanishes as in Fig. 1, then the necessary Lipschitz condition 
is not guaranteed near t I' As Fig. 2 has shown, at t I there is 
also a phase change so rapid that our slow-fluctuation ap
proach can no more be trusted. Thus the extreme cases 
which we provisionally disregarded above now announce 
themselves through a singularity in a slow-fluctuation equa
tion. We shall treat these exceptional low-amplitude states in 
Sec. X; until then we assume that Pz, i.e., Az, has a suitably 
high, positive, uniform lower bound. No such restriction is 
needed for PI; there is no PI in a denominator, and anyway, if 
PI vanishes at some time then (4.12) shows that it will vanish 
at all times, so that the pendulum amplitUde either never 
reaches zero, or else we have pure suspension motion. 

In (4.27), eliminate the cosine by means of the Hamil
tonian (4.11), and thenpz by means of (4.14); the result is 

(31 = (E - CUJftI - cu~YPI = (c i - €PI)!2PI' (4.30) 

Analogous steps throw (4.28) into 
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(4.31) 

Withp,(t) known from (4.21), or from Sec. XI in case c, = 0, 
/3, and /32 are obtained by time integrations. 

The quadrature in (4.30) introduces a further integra
tion constant, say 

/3,(0) = 0. 
We now have four free constants: E,a,to, and 8. The constant 
arising in the remaining quadrature (4.31) can, therefore, not 
be free. Indeed, a glance at Eqs. (4.12) and (4.13) shows that 
the simultaneous extrema of the amplitudes occur when 
sin(2q, - (2) = O. In particular, at t = 0, where we must 
have such an extremum because of the previous standardiza
tion convention (4.25), 

2q,(0) - q2(0) = 2/3,(0) - /32(0) = nT, r integer, 

is required, or without loss of generality, 

/32(0) = 28 + nT, r = 0,1. (4.32) 

The phase functions/3,(t) and/32(t) are necessarily con
nected '9 by a relation cP (j3,,/32) = const, but it cannot be ob
tained explicitly. To see this, introduce dt = dp,/[{(.D,)] ' /2 in 
(4.30) and (4.31). Then/3, and/32 emerge as functions ofp, 
after quadratures involving two elliptic integrals of the third 
kind which have different characteristics n because of the 
different denominators 2p, and 4a - 2p,. Between the two 
results p, can be eliminated in principle, but obviously not in 
closed form. 

V. INITIAL CONDITIONS 

From the transformation formulae (4.2)-(4.6) we have 

(5.1) 

and can write out the coordinates and velocity components 
of the pendulum bob at t = 0 as 

q,(O) = q,o = A ,(O)cosO, 

q2(0) = q20 = A2(0)cos(28 + nT), 

4,(0) = - w,AdO)sin8, 

42(0) = - w~2(0)sin(28 + nr). 

Evidently the choice 8 = 0 singles out a neat subclass of 
states of motion which have 

A, (0) = q 10 > 0, 

A2(0) = ± q20 > 0, upper sign r = 0 

4,(0) = 42(0) = O. 

(5.2) 

These states are set up by taking the bob to some point to the 
right of the vertical, and releasing it there from rest. Accord
ing as we take it up or down from the origin, we must make 
r = 0 or r = 1, respectively; if we wanted to take it to the left 
we should choose 8 = 1T, but this need not be mentioned 
further because it is trivial, the system being symmetrical in 
q ,. While in a release from rest we necessarily begin the mo
tion at a simultaneous extremum of q, and q2' it is not obvi
ous that this extremum coincides precisely with an extre
mum of the amplitude modulation. 

The four-fold extremum makes it trivially easy to calcu
late the values of the other integration constants if 8 = O. 
First from (4.6), 
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R\ = p,(O) = mw,qio/2: (5.3) 

Then from (4.15) the amplitude constant 

a = m(w,qio + 2W2q~o)/4. (5.4) 

Third, after short reduction, the Hamiltonian (4.11) 

E = (m/2)(wiqio + w~q~o) + (y/4)qioq2o, (5.5) 

which differs from the exact total energy (4.7) because keep
ing only the last term of(4.9) brought a factor 1/4 to the 
interaction. 

Now the constant (4.19) follows readily from (5.4) and 
(5.5): 

(5.6) 

If this vanishes we have the special case set aside until Sees. 
IX and XI. Of course we may have c, = 0 trivially by 
qlO = 0, but since with 8 = 0 we also have 4,(0) = 0, this 
simply implies pure suspension motion. Nontrivially, c, = 0 
arises from 

(5.7) 

Next we obtain the roots ofl(.Dd from (4.26). Straight
forward algebra yields with the aid of (4.20), (5.3), and (5.4), 

Co = mw2[(mEw d2 
- (yq20)2]1y2; 

and with (5.3) and (5.6), 

C7 = R,mw2(mEw, + yq20)2IY· 

(5.8) 

(5.9) 

R2 now follows from the formula in (4.26). Of special interest 
is the magnitude relation between R, and R 2• Using the for
mula just quoted we may write 

2(R2-R,)= -(c6+2Rd+(c~ +4c7)'/2. 

It follows thatR 2.;;R, as (c~ + 4c7)' /2.;;co + 2R ,. Since in the 
latter inequality both sides are positive, we may square it; 
some reduction with the aid of(5.3), (5.8), and (5.9) then leads 
to the criterion that 

R,~R2 as qio~4w2q20(mEw, + yq20)/YW,. (5.10) 

On the whole the 8 = 0 states are as tractable as they are 
easy to set up experimentally. Moreover, from them we can 
generate other states of motion merely by phase-shifting. 
Choosing a 8 =1= 0 and plotting the cos(w it + /3i) under the 
amplitude modulation curves Ai(t) with phase shifts 8 and 
28 + nT, respectively, yields another solution to the equa
tions of motion for the same numerical values of E,a, and R ,. 
In fact, we exhaust all solutions in this way, for at any phys
ically possible set E,a,R, there are no solutions other than 
those differing by phase constants only, as the quadrature 
process in the preceding section has shown. Accordingly, the 
8 = 0 states may serve as representatives of all possible 
motions. 

Emphasizing the 8 = 0 states eschews, of course, the 
awkward problem of determining integration constants for 
given initial conditions with nonzero velocities. One useful 
general statement about arbitrary initial conditions may still 
be made: the three roots of the all-important polynomiallti,) 
are continuous functions of the initial conditions, whatever 
these are. Indeed, the roots depend continuously on the coef
ficients oflwhich are continuous functions of E and a which 
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in turn are continuous functions of the P and q and hence, of 
the initial P and q. 

VI. EXPLICIT SOLUTIONS 

We proceed to integrate the equations of motion explic
itly for C I =1=0, referring to the NBS handbook22 for notation 
and formulae on elliptic functions. The two cases RI~R2 
must be distinguished. The dividing case R I = R2 will be 
discussed separately in Sec. VIII. With initial conditions ar
bitrary, these three cases can only be recognized after nu
merical calculation of R I and R 2, but for () = 0 states we can 
recognize them beforehand by means of (5.10). 

IfRI < R2 (pendulum amplitude modulation a mini
mum at t = 0) write Eq. (4.25) as 

Hr(R 2 - R3)j1 /2t = ~(R2 - R3)1/2 rp
,( - P)-1/2 dpl' 

JR, 
(6.1) 

using also the abbreviation (4.22). After the substitution 
NBS (17.4.68), 

sin2l,b = (R2 - R 3)/ji1 - R I)I(R2 - R')fPl - R 3), (6.2) 

(6.1) assumes the canonical form of an elliptic integral of the 
first kind: 

w<t=F(l,blm<), 

w< = Hr(R2 - R 3 )] 1/2, m<: = (R2 -R.)/(R2 - R 3 ).(6.3) 

Inversion of(6.3) followed by another use of(6.2) yields23 

_() R I -R3m<sn
2
(w<tlm<) 

PI t = . (6.4) 
1 - m < sn2(w < tim < ) 

AI(t) andA2(t) now follow from (4.6) and (4.15). 
When the integration runs over a half-period of the 

modulation, PI goes from R I to R2 and l,b from 0 to 90°. From 
(6.3) we therefore find the full period w < T < /2 

= F(1T/2Im<)= K(m<), or 

T< =4K(m<)I[r(R2-R3)].1f2 (6.5) 

The series NBS (17.3.11) shows that 

T < = 21T/[r(R2 - R 3 )] 1/2 + 0 (m <), (6.6) 

with all terms nonnegative since m < >0, which implies a 
lower limit to the period if we let R2--+RI from above. 

To integrate (4.30) substitute (6.4) and write first, 

(31(t) _ (31(0) = r Cs + c9snz;w < t 1m <) ~, 
Jo 1 - n 1<: sn (w < tim <) 2R I 

cs=cl-ER I, C9 =(ER3-c l)m<, nl<: =m<R 3/R I· 
(6.7) 

With w < t = wand a decomposition of the integrand into a 
constant and a partial fraction, the latter yields an elliptic 
integral of the third kind in its canonical form NBS (17.2.16); 
finally, 

(31(t) - 8 = - (c9/2R ln l <w<) 
X [w< t - (1 + nl< cs/c9 )Il(nl<; w< t Im<)]. 

(6.8) 

As Figs. 3 and 4 showed already, the evolution ofthe pendu
lum phase wit + (31(t) is not synchronized with the ampli
tude modulation. The system is not strictly periodic, except 
perhaps under special circumstances. In particular, the four-
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fold extremum of a 8 = 0 state at t = 0 does not necessarily 
recur after one amplitude period. 

The integration of (4.31) follows the same pattern ex
cept that a different characteristic 

n2< =m«2a-R J )/(2a-R.J (6.9) 

arises from the different denominator. The result, also using 
(4.32), is 

(32(t)-(28+m)= - [c9/(4a-2RI)n2<w<] 
X[w<t-(1-n2<cs/c9 )Il(n2<;w<tlm<)]. (6.10) 

If R I > R2 (pendulum amplitude maximum at t = 0), a 
sign change of the square root in (4.25), the substitution 
NBS (17.4.69), and minor adaptations of the argument lead 
to 

PI(t) = RI - (RI - R2)sn2(w> tim», (6.11) 

w> =Hr(R I -R 3)]I/Z, m> =(R I -R z)/(R I -R 3 ), 

T> =4K(m>)I[yZ(RI-R3)]1/2, (6.12) 

{31(t)-O= -(cw/2R]nl>w» 

X [w> t - (1 - nl> csicw)Il(n I> ; (J» tim> I], 

ClO=E(RI-R z), nl> =(RI-Rz)lR I, (6.13) 

(32(t) - (28 + m) 

= - [clO/(4a - 2R I)n h w> ] 

X [w> t - (1 + n2> cx/clO)Il(nh ;w> tim> I], 
(6.14) 

nh =(R2-R I)I(2a-R I)· 

Throughout this section no assumptions about the val
ues of WI' W2' and y were made; hence, the formulae remain 
valid for all systems having a Hamiltonian of the form (4.11), 
not just the elastic pendulum. 

VII. ACCURACY OF THE APPROXIMATION 

From the formulae of the preceding section, the final 
solutionsql(t )andq2(t ) are obtained by means ofEq. (4.3). We 
programmed the resultant expressions for computation, us
ing the various procedures given in the NBS handbook,22 
and printed out graphs by an electronic plotter in many cases 
for which we possessed numerical solutions as described in 
Sec. III. An archive of such graphs is included in Ref. 9. 

When superimposed upon graphs of their numerical 
counterparts, the slow-fluctuation solutions were nearly al
ways in perfect register over several periods T of the ampli
tude modulation. Since we graphed on a 1:2 scale, with the 
bob amplitudes ranging up to some 4 em and the graph trace 
no broader than 0.2 mm, we had to conclude that the accura
cy of the slow-fluctuation approximation was generally no 
worse than about 1 % in amplitude and at most 10° in phase 
over time stretches approaching 100 suspension periods. 

Discrepancies occurred only under two circumstances. 
First, the method usually fails in the vicinity of a zero of the 
suspension amplitude Az(t). This is the exceptional case set 
aside until Sec. x. 

Second, as the initial amplitudes are increased, errors of 
a few per cent in the motion peaks begin to appear while the 
phases still remain accurate. This is to be expected. The 
slow-fluctuation approximation is exact in the limit of infini-
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tesimal amplitudes because in the Hamiltonian (4.11) the 
coupling term vanishes faster than the other terms. By the 
same token, the terms omitted from that Hamiltonian must 
soon or late make themselves felt as the amplitudes become 
larger. We observed that by a pleasant but presumably fortu
itous coincidence, the onset of the discrepancies lies in our 
system at or a little beyond the amplitude levels (2.6) which 
must not be exceeded anyway in order to guarantee the va
lidity of the basic approximation (2.7). Thus it has no practi
cal importance. 

These errors in amplitude develop earlier if the modula
tion range IR2 - RII is large. Conversely, they remain small 
at small modulation. In particular, with far off resonance 
when the modulation is always quite small, we never ob
served visible error in either amplitude or phase; the com
parisons included several rather extreme cases such as the 
one depicted in Fig. 4, and thereby confirmed our liberal 
estimate of the < sign in the condition (4.10). 

In summary, in the elastic pendulum, barring excep
tionallow-amplitude states (see Sec. X), the slow-fluctuation 
approximation is virtually as good as an accurate numerical 
integration in all conditions of practical interest and over a 
fairly wide range of detuning. 

If this exposition sounds long-winded we reiterate that 
the result came to us as a surprise and prompted us to check 
it out thoroughly, for we have never seen such accuracy from 
any of the standard nonlinear approximation methods. 

As a first consequence, we may now put the elliptic 
function developments of Sec. VI aside and proceed to study 
the elastic pendulum with the aid of the slow-fluctuation 
formulae in Secs. IV and V virtually as if they were analyti
cally exact. 

VIII. PURELY PERIODIC MOTIONS 

When a confluence R I = R2 =1= 0 occurs the pendulum 
amplitude A I(t) remains constant. So does the suspension 
amplitude A2(t) on account of the conservation law (4.15); 
moreover, it cannot vanish, because from the equation of 
motion (2.10) it follows that q2=0 is possible only if also 
ql=O (no motion at all). If as before, release from rest is 
adopted as the initial condition, the criterion (5.10) shows 
that 

(8.1) 

is required for the confluence. 
At constant, non vanishing amplitudes the Hamiltonian 

equations (4.12) and (4.13) can only be satisfied if 
sin(2ql - q2)=0. The two degrees of freedom are therefore 
strictly synchronized similar to Lissajous figures. Further
more, the motion is purely harmonic because the phase vari
ations given by Eqs. (4.30) and (4.31) are now constant. With 
the aid of Eqs. (5.3) and (5.6) the harmonic frequency of the 
pendulum mode is immediately calculated to be 

lUlh = lUI + PI = WI + (yl2mwtiq2o (8.2) 

in terms of release from rest, while the suspension frequency 
is lU 2h = 2iV lh . 

These constant-amplitude motions were discovered by 
Witt and Gorelik l who called them "purely periodic." The 
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term stuck. Actually, from a more general point of view the 
periodicity appears subordinate because in more than two 
degrees of freedom harmonic motions at constant ampli
tudes still exist but will be strictly synchronized only in ex
ceptional cases. II 

At exact resonance, 2iV1 - lU2 = E = 0, the condition 
(8.1) takes the simple form 24 

qfo = 8q~o' (8.3) 

If we release the bob from a point above the origin we have 
q20> 0, or r = 0 according to Eqs. (5.2). Symmetrically on 
the other side of the vertical there is another turning point of 
the motion because of the synchronism. Upon release, the 
bob will fall, cross the vertical at q2 = - q20 because the 
suspension motion is simple harmonic, and rise symmetri
cally on the other side. The orbit is cup-shaped; the frequen
cy from Eq. (8.2) is lUlh < WI because of the negative y. Ifwe 
release from a point with Q20 < 0 or r = 1, the bob rises first 
and goes through a similar but cap-shaped orbit with the 
increased frequency Wlh > lUI because the second term in Eq. 
(8.2) is now positive. 

Off resonance the two types of motion behave in differ
ent ways because the condition (S.I) requires at least that the 
right-hand side be positive, or 

Q~o > - mlU I(ElY)Q20' (8.4) 

For discussion, assume first that Ely> O. In the elastic pen
dulum this means that E < 0 (pendulum longer than needed 
for exact resonance), but in a formally similar system with 
y> 0 it would mean E> O. Now set up a cup motion with 
Q20> 0: the requirement (S.4) is fulfilled trivially for any Q20 
however small. The corresponding qto from Eq. (8.1) is also 
small at first but will always be larger than the value for exact 
resonance obtained from Eq. (S.3) because of the positive 
contribution to Q20 in the parenthesis of Eq. (S.I). Thus the 
cup motions can be said to develop continuously out of the 
origin and are flatter than in the resonant case (more saucer 
than cup). On the other hand, for cap motions with Q20 < 0, 
the requirement (8.4) implies a minimum amplitude of 
IQ201 > mlU1Ely. Let us then start from a pure suspension 
motion with 

(S.5) 

[which also has CI = 0 according to Eq. (5.7), but this is of no 
concern at the moment]. The cap motions can be developed 
continuously from this critical suspension motion by releas
ing the bob from a point still lower than given by Eqs. (8.5), 
and displaced sideways by a Q to satisfying Eq. (8.1) which at 
first will be quite small. The cap shape is therefore quite 
peaked at first (like a pierrot hat). 

In the opposite case Ely < 0 (pendulum E> 0, length 
shorter than at exact resonance) the system behavior is analo
gous. The cap motions develop out of the origin and are 
flatter than at resonance (like a coolie hat); the cup motions 
develop from a critical suspension motion which is again 
defined by the release point coordinates (8.5) but with Q20 
now positive, and are deeper than at resonance (like a liqueur 
glass). In either case the frequency formula (8.2) is not affect
ed by the sign of E. 
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These various motions are fairly easy to set up in a table
top model. The initial condition (8.1) is not highly critical; 
evidently the motions neighboring a purely periodic one do 
not depart far from its cup- or cap-shaped orbit. Thus the 
purely periodic motions are dynamically stable. 

Their stability is orbital in the exact sense ofPoincare25
: 

for sufficiently small perturbations of the initial condition 
(8.1) the perturbed orbits in phase space will remain within 
any preassigned, arbitrarily small distance from the unper
!..urbed orbit. For the proof, consider first the polynomial 
!lftl) as defined in Eq. (4.18). Its highest power has a negative 
coefficient, and in the present case we are given that 
R3 < 0 <R I = R 2; cf. also Eq. (4.23) and the subsequent re
marks. It follows that the graph of!has the configuration of 
Fig. 5(a). If then we perturb the initial conditions a little, the 
roots R I and R2 will in general split with!lftIl being positive 
between them, for! < 0 at all PI;;;'O would leave any physical 
motion impossible according to Eqs. (4.18) and (4.6). Thus 
we obtain an amplitude-modulated motion between the new 
R I and R 2,21 but we can keep R I and R2 as close to their 
unperturbed location as we please because of the continuous 
dependence of the roots on the initial conditions. Hence the 
amplitude PI(t) is stable under the perturbations, and with it 
P2(t); or equivalently, A I(t) and A2(t) are stable. 

Now go into the four-dimensional phase space of the Pi 
and q,. The phase orbit is given by 

qi(t) = Aicos(wJ +f3i)' 

(8.6) 

\ 

\ \ 
R = R 

I 2 

a b 

c d 

FIG. 5. The four possible configurations of the multiple root of the polyno
mial(4.18) (schematic). (a) Constant-amplitude motion (orbitally stable). (b) 
Pure suspension motion in the orbitally stable regime. (c) Critical suspen
sion motion (still orbitally stable). (d) Pure suspension motion in the unsta
ble regime, and "nontrivial c, = 0" motions which always have the pendu
lum amplitude finite to start with and zero at the end. 
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in terms oft as parameter, according to Eqs. (4.3)-(4.6). For a 
purely periodic motion with constant amplitudes it is a 
closed curve, and its two projections onto thepl,ql and the 
P2,q2 planes are simply ellipses. After a small perturbation of 
the initial conditions the projected phase curves must still lie 
close to these ellipses because of the stability of the Ai' For 
sufficiently small perturbations the perturbed phase curve 
will therefore lie as close as we may preassign to the unper
turbed one. Q.E.D. 

On the other hand, the purely periodic motions are not 
Liapunov stable, that is, in general the perturbed phase point 
does not remain close to the unperturbed one but will gain 
distance from it in the course of time. This follows at once 
from the frequency formula (8.2). Indeed, in the dynamical 
neighborhood of anyone purely periodic motion there are 
others, but their periods are slightly different. Thus there 
exist perturbations which will throw a projected phase point 
from one of the above-mentioned ellipses onto an adjacent 
ellipse where it now revolves at a different rate, and hence 
must gain ajinite distance from the unperturbed phase point 
after a sufficient number of revolutions. Q.E.D. 

IX. STABILITY OF THE SUSPENSION MODE 

The pure suspension motion q I =0 or PI 0 is a solution 
to the original equations of motion (2.9) and (2.10) as well as 
to the slow-fluctuation equations (4.12) and (4.13). Since 
PI 0 is not possible unless!lftl) has a root of (at least) the 
second order at PI = 0,21 it is necessary for pure suspension 
motion that 

llftIl = Pi(c4 - rPI) 

[see Eq. (4.18)]. The third root ofjis then 

R' = C4/y2 

(9.1) 

[see also Eq. (4.24)], and is readily expressed with the aid of 
Eqs. (4.8), (4.20), and (5.4) together with the required qlO = 0 
as 

(9.2) 

in terms of release from rest. Of course, iq20i = A 2(t ) becomes 
the constant suspension amplitUde. 

Three regimes with a multiple root at the origin are 
possible: 

R'~O, 

as represented in Fig. 5. Under small perturbations they 
evolve in different ways, but with one important feature in 
common: Whenever the multiple root at the origin is dis
solved there must be one root to the left and two roots to the 
right of the origin as was proved after Eq. (4.23). 

If R ' < 0, the graph of ! has the appearance of Fig. 
5(b), and R 'is seen to be the root previously denoted by R 3' In 
this regime the motion is orbitally stable for the other two 
roots R I and R2 which after perturbation determine the am
plitude modulation will lie as close to the origin as we may 
want. The pendulum amplitude A l(t ) = 0 is therefore stable, 
and with it the phase orbit, just as in Sec. VIII. 

If R ' = 0, or explicitly, 

iq20i = mwlidri, (9.3) 
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the root atpI = 0 is threefold and the graph looks as Fig. 5(c). 
The motion is still orbitally stable because under a small 
perturbation the roots will split, but again, all remain as close 
to the origin as we may want. 

If R ' > 0, the graph ofJhas the configuration of Fig. 
5(d). In terms of the notation in Sec. IV, R3 = R. = 0 and 
R ' = R2. This suspension regime is orbitally unstable for the 
double root at the origin can only split into two with the 
origin between them; the perturbed pendulum amplitude 
P. (t ) must therefore develop progressively from the new R I 
outwards up to R ' and is unstable because an infinitesimal 
perturbation has resulted in a finite change. 

In summary, the pure suspension motion is orbitally 
unstable iff 

(9.4) 

Graphically, the development of instability is heralded by 
the wandering of a root ofJWI) from the left to the right in the 
sequence of Figs. 5(b)-5(d). Algebraically, we may also go to 
Eqs. (4.26); noting from Eq. (5.9) that necessarily C7 = 0 if 
R I = 0, it is seen that 

(9.5) 

Equation (5.8) shows that C6 is a holomorphic function of the 
initial value q20' but evidently R2 is nonanalytic when 
R I = 0: it remains zero up to and including the critical am
plitude (9.3) where it makes a kink as c6 goes through zero, 
and thereafter continues with the positive value R2 = - c6 • 

In the orbitally stable regimes from the critical ampli
tude (9.3) downwards, the motion is still Liapunov unstable 
(even though the suspension by itself is an ideal harmonic 
oscillator!). The phase variation of the suspension motion, 
P2' is governed by Eq. (4.31) which contains a, CI' and PI' For 
a motion in the neighborhood of the pure suspension mode 
we have a >0 and large, but CI #0 and small, while PI is 
small in the orbitally stable case. To the first order in PI we 
may therefore write 

(9.6) 

For the pure suspension mode with CI = 0 and PI =0 this 
vanishes, as it must, because the motion is then harmonic 
with frequency W2' However, it does not in general vanish for 
neighboring motions which thus take place at somewhat dif
ferent frequencies. 

Assume for definiteness that R I > R 2; then the exact 
solution (6.11) applies with R. - R2 quite small and there
fore m> small. Bya well-known formula, e.g., NBS 
(16.13.1), sn (ulm)::::;sinu holds for small m; also, sin2u can be 
converted to (I - cos2u )/2. The solution (6.11) therefore 
takes the form 

P.(t) = H(RI + R2) + (RI - R2)cos2w> t). 

Upon insertion of this into Eq. (9.6) it is seen at once thatp2 
has a secular term 

[c I + !(R. + R 2 )(c./2a - €))/4a 

which is a somewhat complicated algebraic function of the 
initial values qlO and q2o, cf. Sec. V, but certainly does not 
vanish identically (in fact, it can be shown to be ~O if €~O). 
Hence the frequency W2 is augmented by this secular contri-
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bution, and the suspension motion cannot be Liapunov 
stable. 

The conspicuous orbital instability of the suspension 
mode has been a main topic throughout the literature. l-iD It 
can be studied by a variety of methods. The above approach 
through the roots ofJW.j seems much the most economical. 
This use of roots is extensively developed, and reformulated 
analytically in Ref. 12; the elastic pendulum also appears 
there again in a broader context. Here we append for con
trast a comparison with the "method of the variational equa
tions .. 26 which is widely used in nonlinear mechanics. 

Regarding q2 = Q20 cosw2t as a "generating solution," 
the method represents neighboring motions by 

Ql =t(t), Q2=q2ocosw2t+1](t), (9.7) 

with the deviations t and 1] presumed to be small compared 
against Q20' Insertion of the ansatz (9.7) into the exact equa
tion of motion (2.9) yields after omission of a t1] term the 
"variational equation" 

a Mathieu equation; if we adopt the canonical form 

t" + (A - 2h 2cos2z)t = 0, 

the connection is 

(9.8) 

2z = W2t, A = (2WtiW2)2, h 2 = - 4rQ201mw~. (9.9) 

Near resonance, 2w. ::::;W2' thesolutionst (t ) will be unbound
ed if the (dimensionless) parameter values lie within the 
A = I instability region of the Mathieu equation stability 
chart (e.g., NBS Fig. 20.1) whose stability boundaries are 
gi ven by A ::::; 1 ± h 2. Hence there will be instability if 
Ih 21> IA - II, orafterinsertion of the expressions (9.9) and a 
little simplification, 

IQ201 > m(w. - !€)IE/rl. (9.10) 

This result differs by the !€ from the previous criterion 
(9.4). Given the well-tested accuracy of the slow-fluctuation 
technique, we submit that its result (9.4) is the correct one of 
the two. The variational equation technique is, in fact, sus
pect because it disregards the Liapunov instability of the 
suspension. Loosely speaking, the cosine in Eq. (9.8) should 
not have the constant frequency liJ2' but one that depends on 
5 and 1]. More to the point, the deviation 1](t ) of the neighbor
ing motion from the generating one cannot be small because 
it needs to keep up with a frequency change of Q2 from W 2 to 
some slightly different value. Hence the neglect of 51] is not 
justifiable; there should be an 1] term accompanying the co
sine in Eq. (9.8). It is well known27 that in equations of the 
Hill type,y" + [A + Q (z)) y = 0, the stability properties are 
highly sensitive to changes in the periodic function Q (z). See 
the stability charts for the Whittaker-Hill equation,28 which 
is essentially Eq. (9.8) with a second harmonic added to the 
cosine, or the chart for the Lame equation,29 which carries 
an sn2 instead of the cosine. In comparison with the Mathieu 
case the differences border on the drastic. No wonder the 
disregard of Liapunov instability in the present problem 
should lead to a spurious !€ in formula (9.10), small as this is 
anyway.30 
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X. EXCEPTIONAL LOW SUSPENSION AMPLITUDES 

We now take up the special case excluded since Sec. IV: 
a suspension amplitudep2(t) or A2(t) which becomes so small 
at some time t = t I that the phase equation (4.28) apparently 
turns singular. Since the original equations of motion (2.9) 
and (2.10) are in no way singular, and since the suppression 
of the "fast fluctuating" terms cannot create a singularity 
either, we are here faced with an artefact due to the introduc
tion of amplitudes and phases instead of Cartesian coordi
nates. The specification that an amplitude must not be nega
tive has the consequence that A 2(t ) cannot pass through a 
zero with a smooth tangent at a finite slope; it can only re
bound from the zero with the slope reversed in sign. Since the 
coordinate in the substitution (4.1) must be differentiable, a 
phase jump by exactly 1800 will be needed to compensate 
exactly for the sign change in the slope of A 2 • This is the 
mathematical origin of the singularity, and of the phase 
change which was visible already in Fig. 2. A detailed, gener
al discussion31 of the difficulty is available in Ref. 11. Here 
we deal with the pendulum is a less formal manner. 

Thus, assume that A 2 vanishes at some t = t I' It follows 
from Eqs. (4.1) and (5.1) thatbothq2(tIl = 0 and 42(t l ) = 0; to 
set up such motions we must propel the bob from some posi
tion ql(t l ) on the horizontal through the rest position with 
any horizontal velocity. This is not easy to do successfully in 
a table-top experiment except if also 4 I (t Il = 0 (release from 
rest) or q I(t d = 0 (horizontal hammer blow at the hanging 
bob). For such initial conditionsAdtd and/:1l(tIl can be un
ambiguously calculated, but /:12(t d remains indeterminate at 
first. 

Using Eqs. (4.3)-(4.6), the definition of the momentum 
(4.2) yields at once 

(10.1) 

The same substitutions transform the exact equation of mo
tion (2.10) into 

A2sinih + A2 t32COsij2 = (y/mw2)A icos2ql' (10.2) 

Now assume for the sake of discussion that COsijl(t d #0, 
i.e., the motion is not being set up by the hammer blow men
tioned above. If in Eq. (10.2) we let t-tl from the right, Az 
vanishes while t32 cannot tend to infinity so that A2 sinq2 
must not vanish; in fact, it has the same sign as y which is 
negative for the pendulum. Since A2 can only grow from t I 
onwards, A2(t I + ) must be positive, and sinq2(t 1 + ) < 0 fol
lows. Letting t also approach t 1 in Eq. (10.1), it is seen that 
cosij2(1 I) = 0, and therefore specifically 

sing2(t, + ) = - 1. (10.3) 

If on the other hand we make the approach to II from the left, 
A2(t l - ) can only be negative and 

sinq2(t, - ) = + 1 (lOA) 

results. Equations (10.3) and (lOA) hold for the pendulum; 
for a system with positive y reverse the signs on the right
hand sides. In either case 

(10.5) 

is implied (mod21T of course). This is the mentioned phase 
jump, demonstrated now in analytic detail rather than collo-
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quially as above. If in the end we were also to let COsijl (I I )~O 
the result (10.5) is evidently not affected, but we will have 
A2(f, ± )~; this is the only possibility for the suspension 
amplitude modulation to reach its zero minimum with a con
tinuous tangent. 

Next let us solve Eqs. (10.1) and (10.2) for A2 andA 2 t32 : 

A2 = (y/mw2)A icos2q1sinq2' 

A2 P2 = (y/mw2)A iCOS2qlcosij2' 

Division leads at once to 

t32 = (A z/sinQ2) X (COsij2/ A z), 

and ifby I'Hopital we replace cosQ2/ A2 by - q2sinQ2/ A2 , we 
find 

limt32 = - q2(1 d as f_l, ± . 
Because of q2 = W2 + t3l' this means that 

t32(t) = -!w2 neart=f,. (10.6) 

Integration in accordance with Eqs. (10.3) and (lOA) yields 
finally (making also the simplest choice of constants), 

(10.7) 

for f near t, (for the pendulum, or ± for a system with 
positive y). 

In addition to the phase jump we have here a phase 
variation so rapid that it entirely vitiates the slow fluctuation 
approach in the neighborhood of I = I I' Note that the pendu
lum phase/:11 does not vary fast for the pendulum goes 
smoothly through a maximum of its energy att = fl' [In fact, 
it can easily be shown from the two equations for A I and t3, 
analogous to Eqs. (10.1) and (10.2), thatt31 has a double zero 
at t = I I> but this detail is not needed for our argument.] 
Hence, in the trigonometric decomposition (4.9) the last 
term, the one we kept for our approximation, varies near 
1= f, as cos [€f + 2/:1I(t) + !w2t + const], hardly any "more 
slowly" than the first term which we dropped and which 
now varies as cos(!w21 + const). 

Of course, one should expect that the rapid variation 
(10.7) dies out quickly on both sides of the discontinuity as 
any transient would. This is borne out by comparison of 
exact numerical integrations with slow-fluctuation solutions 
computed for the same initial conditions (of release from 
rest). Again, Ref. 9 contains representative graphs. We first 
selected some initial conditions involving a fairly large sus
pension amplitude which we knew from the numerical inte
grations would be followed by a near-zero of A2 later on. 
Figure 1 is a type specimen. The slow-fluctuation solutions 
in these cases remained in perfect register up to some 2-5 
suspension periods from the (exact, numerically found) am
plitude minimum; then a phase error develops, the ampli
tude becomes incorrect, and its minimum is often reached at 
the wrong time. There are exceptions though. For instance, 
with € = 0, qlo = 5 mm, and q2 = - 16 mm the amplitude 
comes down to A2 ;::;0.7 mm after about 11 sec; the slow
fluctuation solution yields a little less, but the minimum lies 
at the right place and there is no cumulative phase error so 
that this solution remains in good register throughout the 
entire next modulation period of T;::; 22 sec. On the other 
hand, when we took the suspension amplitUde minimum it-
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self as the initial condition, the slow-fluctuation solutions 
always had a poor start, misrepresented the initial phase 
transient to a more or less visible degree, developed a visible 
amplitude error, and often erred seriously in the modulation 
period T (by 20% in one case). 

Evidently the slow-fluctuation solution can always be 
used safely from the suspension amplitude maximum on
wards (and backwards) up to 2-5 suspension periods from 
the minimum, where it must usually be spliced to an accu
rate numerical solution. On the other side of the minimum 
another splice can be made, and so forth. The details of the 
splicing may be delicate, though, if the quoted numerical 
evidence is an adequate guide. In the light of possible appli
cations (see next section and the Appendix) we believe that 
this subject deserves a separate, focused study, and we pro
pose to take it up on another occasion. 

At all events, note that not the smallness of the ampli
tude but the sharpness ofthe phase variation is the important 
feature. For any state of motion, if the amplitude modulation 
range IR2 - RII is small compared with min(R I ,R2), the 
phase variations cannot be rapid because little energy is ex
changed between the degrees of freedom, and if the suspen
sion amplitude itself is small the validity of the slow-fluctu
ation method is in no way impaired. In particular, this holds 
for the constant-amplitude solutions which develop out of 
the origin with a small suspension amplitude. Thus, the ar
guments of Sec. VIII stand uncorrected. 

The stability arguments of Sec. IX also remain unaffect
ed. If the pure suspension mode is stable, neighboring mo
tions are amplitude modulated with an arbitrarily small 
range, and there can be no problem even if the suspension 
amplitude is small to start with. In the unstable case, on the 
other hand, the unimpaired validity of the slow-fluctuation 
solutions around a suspension amplitude maximum guaran
tees that the diagnosis of afinite modulation range for neigh
boring motions will still be correct, even though some of 
these motions may involve very low suspension amplitude 
minima. 

We must finally ask, what exactly is the phase behavior 
of the slow-fluctuation solutions at times where P2(t) vanish
es? An equivalent question is: suppose we are given a system 
for which the S defined by Eq. (4.11) is the exact Hamilton
ian,32 how do the phases behave? The answer is not immedi
ate, for this new system appears exceedingly complex when 
it is described in terms of the original coordinates q I and q2. 
Take the trigonometric identity 

cos(2ill - il2) = (cos2ill - sin2ildcostl2 

+ 2 sinill COstll sinil2' 

and apply the canonical transformation (4.3), (4.4) in reverse 
to the coupling term in S; it is found easily that 

YPI(ii2/2)I12cos(2ill - il2) 

= ly(qiQ2 - piq2/m2wi + 2PlqtP2/m2wIW2)· (10.8) 

Thus the new system comprises most unusual, momentum
dependent couplings which can hardly be understood in 
straightforward physical terms such as we applied without 
qualms to the pendulum. New formal arguments are needed. 

Assume that P2 vanishes at some t = t I. This can only 
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happen for special values of E and a. From the conservation 
law (4.14) we have first 

limpl = 2a as t~tl ±, (10.9) 

and from the Hamiltonian (4.11)wehaveS = E = WI limpl' 
whence 

E=2w la. (10.10) 

The singularity in the phase equation (4.28) is best under
stood from the equivalent Eq. (4.31). Owing to Eq. (10.9), the 
denominator 4a - 2PI vanishes at t = tl' but use ofEq. 
(4.19) together with the relation (10.10) shows quickly that 
the numerator c I - EPI vanishes, too. By I'Hopital it follows 
that 

(10.11) 

compared with the transient (10.6), this one is very mild. 
At any rate, the singularity is only apparent, and there

fore the original Eq. (4.28) forces us to conclude that 
COS(2q1 - il2) = 0 at t = t I. In the amplitude equation (4.13) 
we have then 

sin(2ill - il2) = ± 1 as t~tl. (10.12) 

Since P2 is essentially A ~ and P2 is A~2' and since A2 again 
can only be positive/negative to the right/left of t I' it is seen 
that in Eq. (10.12) the ± sign holds as t~t I ± (for the pen
dulum analog with a negative y). Thus there is a certain anal
ogy with Eqs. (10.3) and (10.4). The analogous phase jump 
occurs in 2ill - il2 but is confined to il2' of course, because PI 
vanishes at t = tl according to Eq. (4.27) and is continuous 
everywhere. This was confirmed by the calculations men
tioned above; the suspension phase reversal is quite con
spicuous, especially as there is now no notable phase vari
ation right and left of it. Of course, in these numerical studies 
we did not meet exact zeros of P2' and so the phase changes 
did not go abruptly through a full 180·, but smoothly 
through a little less. The change process is accurately ren
dered by Eq. (4.31) which in these circumstances has near 
zeros in its numerator and denominator at slightly different 
times. 

However, at an exact zero of the amplitude, Eq. (4.31) 
can no longer represent the required phase jump. We must 
then integrate Eq. (10.11) and choose the constants in accor
dance with the discontinuity relation (10.12) much as we did 
above when deriving Eq. (10.7). A complication in the pre
sent case is that we must also take account of the phase rela
tion (4.32) which obliges us to provide for two 112-functions 
having r = 0 and r = 1. The result is that 

112(t) = !E(t+ t l) +2PI(tl) +r1T+11T, (~tl (10.13) 

holds for t near tl ifr = 0, whereas for r = 1 the + becomes 
± (for y negative; otherwise reverse both double signs once 

more). This somewhat opaque formula is best established by 
direct substitution into Eqs. (10.11) and (10.12). 

In summary: (a) the phase reversal through 180· (or 
nearly) is no more than a transformation artefact; (b) the 
transient (10.6) in the pendulum is an additional, prominent, 
physical effect; and (c) the system with coupling (10.8), or 
Hamiltonian S, exhibits no such transients over and above 
the phase reversal. 
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XI. STATES WITH c1 = 0 (NONTRIVIAL) 

If c, = 0 the polynomial (4.18) always takes the form 
(9.1) with a double root at p, = O. We can make c, = 0 by 
setting up a pure suspension motion; these are the cases dis
cussed in Sec. IX. However, c, can also vanish for initial 
conditions involving a pendulum amplitude p, =1= O. The only 
possible graph for 1(Ji.) is then Fig. S(d). Characteristically, 
every motion set up with p, =1= 0 and the double zero ofl at the 
origin must evolve2

' toward the pure suspension motion 
p, 0, either by monotonic pendulum amplitude decrease or 
by an increase to p, = R ' followed by decrease. The time to 
reach the pure suspension state is infinite, for the integral 
(4.21) diverges (logarithmically) iflhas a double root at the 
upper limit of integration. 

These "nontrivial c, = 0" motions are impossible to set 
up in a bench experiment because of the instability of the 
final suspension motion. The faintest perturbation will split 
the double root in Fig. S(d); the pendulum amplitude then 
goes nearly to zero but eventually returns to p, = R ' with a 
rather long period. Figure 1 is again typical. We had no pass
able success either when we experimented with a pendulum 
of some 7 m length and a heavy bob suspended in a stairwell. 
Yet the appeal of these motions is not merely esoteric, for 
they bear the marks of a frequency-doubling device: a more 
or less mixed pendulum motion is theoretically converted to 
a pure suspension mode at about twice the frequency. 

For explicit treatment we choose t = 0 at p, = R ' as 
before. (In terms of the previous notation, R3 = R2 = 0 and 
R ' = R ,.) Ifwe also assume release from rest, R 'is not given 
by the formula (9.2) which holds only if qlO = O. We now 
have c, = 0 arising from the condition (S.7), or in full detail 

ql(} arbitrary, q20 = - m£u,dr fixed. (11.1) 

In the limit as qlO-O we are again led to the critical suspen
sion motion (8.S), or Fig. S(c); conversely, thec, = 0 motions 
can be said to develop from the latter in branches distinct 
from the pierrot hat and liqueur glass motions (at I:lr> 0 
and d r < 0, resp.) of Sec. VIII. Obviously only one val ue of r 
is possible when a c, = 0 motion is started from rest: r = 1 or 
o according as I:lr> 0 or < 0; the other value would corre
spond to a nonzero velocity at t = O. With this in mind, we 
may now substitute the condition (11.1) into Eq. (S.4) and 
obtain from Eq. (4.20), 

(11.2) 

for release from rest with c, = O. 
According to Eqs. (4.2S) and (9.1), the pendulum ampli-

tude obeys 

I
ji, 

t = - dp,/yp,(R' _ p,)'12. 
R' 

The integral is elementary and yields, after inversion,33 

p,(t) = R '/cosh2(YR " 12t 12), (11.3) 

Remarkably, this does not depend on 1:. The suspension am
plitude is obtained as usual from the conservation law (4.14) 
or (4.1S). 

The pendulum phase integration becomes trivial when 
c, = 0; from Eq. (4.30), 
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(11.4) 

Thus the pendulum moves at the constant frequency 
£u, - ~I:; this can be observed in Fig, 1. The suspension phase 
is different. Using the substitution dt = - dp/[((Ji.)] '12, 

and setting c, = 0, we find from Eq. (4.31), 

l
ji, 

[32(Ji,) = I: dp/y(4a - 2p.)(R' - P.)'/2, 
R' 

( l1.S) 

The integral is again elementary, but two cases must be dis
tinguished. 

Take first R ' < 2a, or equivalently P2(0) > 0 as follows 
from Eq. (4.14). The integration then yields 

[32(Ji,) - (28 + m) = - [t:ly(2a - R ')'12] 

Xarctan[(R' - p,)/(2a - R ')]112; 

( 11.6) 

to obtain [32(t), insert the expression (11.3): 

[32(t) - (28 + m) = - [dy(2a - R ')'12] 

X arctan ([R '/(2a - R 'I] 1 12tanh(Y(R ') 1 12l 12) I. (11.7) 

Ifin Eq. (4.31) we had integrated from t = Oto - 00 we 
should have had to change the sign of the V lin the substitu
tion, resulting in a sign change of the argument of the arctan
gent in Eq. (11.6) which in Eq. (11. 7) is rendered correctly by 
writing tanh instead of Itanhl. Thus, Eq. (11.7) is valid as it 
stands for all t from - 00. 

The second case is that R ' = 2a. According to Eg. 
(4.20), R ' = c41y = 2a is possible only if I: = 0, Equation 
(4,31) then becomesr32-0except at t = 0, where the denomi
nator also vanishes; the integration has already been done in 
Eq. (10.13) which applies to just this situation of P2(0) = 0, 
and gives us, using also Eq. (11.4), 

[32(t) = 28 + m + !1T, t~O, (11.8) 

with rand the double sign as in Eq. (10.13), and t unbounded. 
So now the suspension phase is constant except for a 1800 

jump; very nearly this behavior can be observed in Fig. 2. 
Note how in a c 1 = 0 state at exact resonance, both the pen
dulum and the suspension rigorously move at their normal 
frequencies £U 1 and £U2 • 

The validity of these results requires careful scrutiny, 
The condition (11.1) shows that for sufficiently large I: the 
suspension amplitude minimum at t = 0 will not be so low as 
to impair the validity of the slow-fluctuation approximation. 
We can then obtain all solutions by calculating the one for 
release from rest and providing phase shifts of 8 and 28 + m, 
just as before. At smaller 1:, the approximation can no more 
represent the transient (10.6) and fails around t = O. In fact, 
the various formulae for release from rest, including Eq. 
(11.2) also must begin to fail. The solutions of the present 
section still hold away from t = 0, however. In particular, 
the universal pendulum amplitude modulation (11.3) can be 
set up backwards from t = + 00, with the usual phase shifts, 
to yield all possible solutions down to some moderately small 
t> 0 where a splice to an accurate numerical solution must 
be made as discussed in the previous section. 

For the system having S as the exact Hamiltonian, all 
results of this section hold without restriction on 1:. The to
tality of solutions is again obtained by applying phase shifts 
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to the solutions calculated for release from rest. However, 
the concept of "release from rest" requires a subtle modifica
tion. For the actual pendulum, we naturally define "rest" by 
zero velocity. Velocity is proportional to momentum by the 
definition (4.2). Thus, the canonical formula (4.4) leads at 
once to the convenient Eq. (5.1) which was the base for study
ing the initial conditions. In the system with S the momen
tum is not defined by Eq. (4.2). From the Hamiltonian resol
vent equations as lap; = q; and the interaction (10.8), it is 
seen that there is a fairly complicated momentum-velocity 
relation. Consequently we cannot go from Eq. (4.4) to the 
tractable Eq. (5.1); we must formulate the initial conditions 
directly in terms of the momentum (4.4), not of the velocity. 
Correspondingly, "rest" becomes "canonical rest," defined 
by zero canonical momentum. 34 With this proviso..:...all our 
formulae for release from rest remain valid for the S-system. 

Canonical rest is not easy to visualize. Loosely speak
ing, it is a kind of wobble about a fixed mean position, cf. Ref. 
34. Clockwise and anticlockwise types of wobble must be 
admitted jointly, of course; this explains why in Eq. (11.8) 
both values of r are possible even for release from rest. 
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APPENDIX: SECOND-HARMONIC GENERATION 

When the equations of motion (4.12) and (4.l3) and the 
combined-phase equation (4.29) are written in terms of am
plitudes with the aid of the relations (4.6), they become 

A] = (y/2mwdA ]A 2sincj\, (AI) 

A2 = - (y/4mw2)A isinq], (A2) 

q] = E + (ylm)(A2/w] - A i 14w~2)COSq], (A3) 

where 

q] = 2ii] - ii2' 
Equations (Al)-(A3) are isomorphic35 to the equations 

governing second-harmonic generation in nonlinear op
tics. '6 The differences are minor. The optical equations de
scribe the space variation of a wave propagating along Ox; 
with kx corresponding to - wf, replace our w;t by k;x and 
reverse the signs of q] and of all phase functions and phase 
constants. Also, dispersion in the medium generally forbids 
inverse proportionality between wand k ("phase mis
match"). While.1k = 2k] - k2 corresponds precisely to 
- E, the Wi in the denominators ofEqs. (Al)-(A3) need to be 
properly related to the k i • As a result, there are scale factors 
between our Ai and the optical field amplitudes E i; they are 
best found by comparing our conservation law (4.15) with its 
optical analog (which is called a Manley-Rowe relation '7). 

The theory of second optical harmonicsJ6 goes back to a 
pioneering paper by BIoembergen and collaborators. 3K It is 
strictly analogous to a slow-fluctuation approximation be
cause all combination frequencies except the near-resonant 
one are neglected. It has not been deliberately formulated 
and explored in Hamiltonian terms.39 Thus, the present 
study has further insights and details to offer. In particular, a 

1209 J. Math. Phys., Vol. 22, No.6, June 1981 

complete classification of all solutions now exists: explicit 
solutions, including phases, are available which can be 
linked to transparent initial conditions; complete power con
version is seen to be impossible because of the instability of 
the desired final state; and exact phase coherence obtains 
(despite "mismatch"!) in the purely periodic solutions, which 
are orbitally stable and to some extent tunable according to 
Eq. (8.2). 
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I. INTRODUCTION 

As is well known/·2 Finsler space is a metric space 
in which the line-element (x, y), instead of the point 
(x), is chosen as the independent variable, the vector 
y( = l; A = 1,2, 3,4) being regarded, from a physical 
point of view, as the internal variable associated with 
eachpointx(=xK

; K=1,2,3,4). From this, it maybe 
said that Riemann space is a point-space, while Fins
ler space is a line-element-space. In other words, 
Finsler space is considered the higher order space of 
order one from the standpoint of the theory of higher 
o~der spaces2 [see Appendix, Subsec. (1)]. Therefore, 
the y-dependence characterizes essentially the Fins
lerian field and this y-dependence has been combined 
with the concept of" anisotropy" or "nonlocaUty" (cf. 
Refs. 3 and 4), where the vector y is expected to sup
ply new internal degrees of freedom. In fact, it has 
been shown that the so- called nonlocal field theory ad
vanced by Yukawa,5 especially bilocal field theory, can 
be considered by means of Finsler geometry.3.4 Along 
this line, it may be said epistemologically that the 
Finslerian field corresponds to a nonlocal field obtained 
by attaching the vector y to each point (x) of a local 
(i. e., Riemannian) field. 

On the other hand, within the theory of gravitational 
fields in Finsler spaces,6.7 there arise many interest
ing and peculiar features caused by the y-dependence 
and such structurological problems as the field equa
tions, the conservation laws, etc., have been investi
gated by analogy with Einstein's theory of gravitational 
field.6 And on the side of Finsler geometry, the theory 
of special Finsler spaces has been extensively develop
ed by Matsumotol and his school. Therefore, under 
these circumstances, it becomes necessary now to con
sider those problems in more detail by means of the 
theory of special Finsler spaces. So in this paper, 
taking account of the y-dependence, we shall focus our 
attention on the conservation laws for the fields in some 
special Finsler spaces such as scalar curvature space, 
locally Minkowski space, etc., and obtain some new 
conservation laws. 

Mathematical preliminaries needed in this paper are 
summarized in the Appendix. 

II. CONSERVATION LAWS-I (SCALAR CURVATURE 
SPACE) 

It goes without saying that in order to obtain conser-

vation laws, it is necessary to take notice of the curva
ture tensor, as in Einstein's theory,6 because the field 
equation is written in terms of the curvature tensor. 
Among three kinds of curvature tensors of Finsler 
space [see Appendix, Subsec. (4)], the most Riemann
like one is, of course, the third curvature tensor R~~" 
(A 12). Concerning this, it is easily seen6 from the 
Bianchi identity (A23), by contraction of 0' and K, that 
the Ricci tensor R,,~('= R.:A"') becomes, in general, non
symmetric due to the terms {C~ "R:",}, where R:,., is the 
torsion tensor (A13). This is one "non" -Riemannian 
aspect caused by the y-dependence. Now, in order to 
proceed to the conservation laws with respect to R~~", 
it is necessary to find a certain kind of Finslerian ten
sor constructed by R~~" whose divergence vanishes, as 
the divergence of the Riemannian Einstein tensor van
ishes. For that purpose, we should take account of 
another Bianchi identity (A24). Then, first, contract
ing 0', A and then {3, K, we can obtain the following equa
tionl

•6 : 

(R" 1 R{j" ) 1 aK{p x R' ~, "-2 "!K+2R' a'" ~K+Pax,RK" 

+Pa\,R:~}=O, (2.1) 

where P a~ ", denotes the second curvature tensor (A 11), 
and RK" '= Rx" R'"\ R '= R"" (j~. Therefore, it is found 
from (2.1) that the divergence of the Finslerian Ein
stein tensor (R"" - tR{j~) does not vanish. So, second
ly, we must here impose some special conditions on 
(2.1) in order to obtain the Finslerian conservation 
laws, which will be actually done in the following. By 
the way, if there exist some simple relation between 
Pv\" and R~" or P/x" and C~'" then (2.1) and the anti
symmetric part of R"x may be combined with each 
other, but this is still an open problem. 

We shall first consider a Finsler space with scalar 
curvature in Berwald's sense. l

•
9 In this case, Ber

wald's curvature tensor Hv\" [(A 19) and (A20)]is stipu
lated as 

H V"X"yVX" y~X" =K(R'v~ R',," - R'V" R'1'A)yVX"yXX" , (2.2) 

where the sectional curvature K(x, y, X) is assumed, by 
definition, not to depend on a tangent vector X" at every 
supporting element (x, y). [The form of Hv,,~" itself in 
this case is given by (A21) J. The following equations are 
known as the necessary and sufficient conditions for 
this case (cf. Refs. 1 and 10): 
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or 

(2.3) 

where h"K denotes the angular metric tensor (A3). 
Then, substituting this torsion R"XK into (2.1) and taking 
account of the relation (A18), we can have (cf. Ref. 
10) 

{R
K
,. - ~Ro~ + Bv{S"1J. -~so~)yK}IK 

- Bvlo{S"1J. - ~So~) = 0, (2.4) 

where B v=(1/3L)o(KL3 )/oyV, and SV"AK is the first cur
vaturetensor (A10) andSv""'S,,s"sK"'v, S"'Sv"o~. 
Therefore, at this stage, we can say the following: If 
SV" _ tSO~ = 0 or Bv = 0, then (2.4) reduces to a simple 
conservation law 

(2.5) 

which is quite similar to the Riemannian one. By the 
way, since the condition (SV" - tSo~ = 0) is reduced to 
SV" = 0 and our case is four-dimensional, Sv\" itself 
vanishes for this case, as has been proved by Matsu
motoll

; if Bvlo=O, then a new conservation law such as 

{R K" -}Ro~ + Bv(SV" - ~SO~)yK} I K = 0 (2.6) 

can be obtained from (2.4). The term {BJS~ - tSO~)yK} 
may play, in a certain sense, a role of sink or source 
for the (Finslerian) gravitational field. 

Next, we shall consider a constant curvature space, 
where the above-introduced scalar curvature K(x, y) 
becomes a nonzero constant. In this case, (2.3) is re
written as, by virtue of (A3) and tlhK{ YAl" l.} = 0, 

(2.7) 

and (2.4) is reduced to, because of Bv=Kyv, Bvlo=O and 
v~~ =0 (cf. (AS) and (A10)], 

(2.S) 

which has often been cited as a typical example of the 
Finslerian conservation law (cf. Refs. 1, 6, 7, and 10). 
Further, it is known1

•
6

•
7 that the Ricci tensor becomes 

symmetric, because the terms {C~sRf",} disappear due 
to (2.7) and (A8), and that Berwald's curvature tensor 
is given by [see Appendix, Subsec. (5)] 

(2.9) 

Equation (2.9) is often used as another definition of the 
constant cllrvature of Finsler space. 

Thirdly, if the third curvature tensor Rv"x. itself is 
given in a form similar to (2.9), i. e., 

(2.10) 

where A is a nonzero constant, then SV"XK = 0 and P V"AK 
=PV"KA hold good [see (A18)], as has been proved by 
Akbar-Zadeh.12 In this case, both (2.6) and (2.8) reduce 
to the same form as (2.5). Equation (2.10) has a form 
similar to the case of constant curvature of Riemann 
space, but as mentioned above, the constant curvature 
of Finsler space is defined by use of Berwald's curva
ture [see (2.9)]. 

Now, as mentioned in the Appendix, Subsecs. (3) and (4), 
the coefficients of connection r..A and C~A are usually 
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assumed to be symmetric with respect to the lower in
dices. But if the torsion ~x (A14) is assumed to ap
pear, as an example of a more generalized space than 
Cartan's, then the Bianchi identity (A24) is generalized 
to (A25). Therefore, starting from (A25), we can re
peat the same procedure as the above in order to obtain 
some new conservation laws for this case. But that is 
too lengthy to describe here, so that only one new con
servation law will be shown in the following. Now, the 
most interesting and faScinating special form of T~x 
hitherto known seems to be the following: 

(2.11) 

where Qx(x) is an arbitrary vector and the coefficient of 
connection F7.A [cf. (A5)] is assumed to depend on x 
alone. Namely, in this case, the space becomes a 
Wagner space.13 Then, under the assumptions of (2.10) 
and QA = 0 Q/axA [Q(x) is a scalar], we can obtain from 
(A25) another new conservation law as follows: 

(RK,. -tRo~ +12Aao~)IK=0, 

which is a generalization of (2.5). 

(2.12) 

As for the above-mentioned torSion ~A depending on 
only x, it has been combined with spin or spin-angular 
momentum within the Einstein-Cartan theory14 or the 
theory of new general relativity/5 where some "non"
Riemannian features carried by r..x have been noticed. 
On the other hand, from a more geometrical viewpoint, 
if the conformal transformation I = L expa [L is the 
fundamental function and a(x) is a scalar] is applied to 
T~A of (2.11), then it is transformed into13 

(2.13) 

where a" = oa/ax". Therefore, if QA = oa/axA and a 
+ a=O are assumed, the torsion T~A of (2.13) vanishes 
and the torsion T~A of (2.11) itself is written in terms 
of the conformal scalar a(x) (cf. Ref. 7). Namely, in 
this case, the non-Riemannian characteristics may be 
related to the conformal scalar a. This kind of thing 
has often been considered in connection with Dirac's 
conformally invariant theory (d. Ref. 16). 

III. CONSERVATION LAWS-II (LOCAllY 
MINKOWSKI SPACE) 

As mentioned in Sec. I, the y-dependence character
izes essentially the Finslerian field. Emphasizing this, 
if we assume that the fundamental function L or the 
metric tensor f.[XK (A2) does not depend on x, then we 
can obtain a locally Minkowski space prescribed by 
such geometrical conditions as C~ AK Iv= 0 and Rvux. 
= 0.1,7 In this case, since the second curvature tensor 
P V"A' (A 11) vanishes too, only the first curvature ten
sor SV"AK (A10) appears. Therefore, we must consider 
the conservation laws with respect to SVUA" Concern
ing this, in the same manner that Eq. (2.1) was obtain
ed, contracting the Bianchi identity (A22), we can ob
tain one conservation law as follows (d. Refs. 1, 6, 
and 7): 

(SKU - tSo~) I. =0, (3.1) 

which corresponds to (2.5). Here, if we write the field 
equation in the form 

Satosh i Ikeda 1212 



                                                                                                                                    

~A-tSg"A=T"A (T~I.=O), (3.2) 

we can obtain -S=T"Jo.g"A and -tS=T "Al"lA by multiply
ing (3.2) by g"A and l"lA (lA=yA/L, unit vector), respec
tively. Therefore, the energy-momentum tensor T "A 
must satisfy the relation T"Jo.(g"A - 2l"lA) =0, from which 
T "A may be given by T "A =g"A + 2l"lA (cf. Ref. 6). 

On the other hand, in the locally Minkowski space 
there exists no condition imposed on the coefficient of 
connection ~A except that ~Jo. becomes a function of x 
alone owing to the condition CIl A K i u= 0 and satisfies 
another condition RV"A' = 0, so that the torsion -Z:A (A 14) 
can be introduced as in Wagner space [cf. (2.11)]. 
However, we cannot obtain any conservation law with 
respect to SV"A' wt';.~h includes T~A' because there is no 
Bianchi identity containing both Sv\lli, (or Sv\" I,) and 
-Z:A simultaneously. 

These considerations about the y-dependence are 
analogous to the case of tangent space, because the 
tangent space is regarded as a Riemann space at a fixed 
point and its spatial structure is described by gA.(y), 
C"A'(Y)' and SWA.(y), where C"A'(Y) becomes equal to 
the Christoffel three-index symbol derived from gA.(y) 
and SV"A'(Y) to the Riemannian curvature tensor. 
Therefore the conservation law (3.1) and the field equa
tion (3.2) can be adapted to this case. However, it 
should be remarked that the vector y obeys only a lin
ear transformation, so that the tangent space is con
sidered a very restricted Riemann space (cr. Ref. 1). 

IV. CONCLUSION 

In this paper, we have obtained some conservation 
laws for the fields in some special Finsler spaces such 
as scalar curvature space, locally Minkowski space, 
etc. In Sec. II, the third curvature tensor RvllAK (A12) 
has been taken into account and in Sec. III, the first cur
vature tensor SV"A' (A10) has been taken up. However, 
any valuable conservation law with respect to the sec
ond curvature tensor P VILA' (A 11) cannot be obtained; 
this is still an open problem. This seems to be very 
difficult, because in the Bianchi identity containing 
P/Alli , orPv\" I" there always exists Rv\" or Sv\" 
and it is necessary to specialize both P v\" and Rv\" 
or Sv\" simultaneously. Concerning the above-men
tioned conservation laws, we should find some consid
erable effects of them in future. 
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APPENDIX 

(1) In the higher-order space of order M( = 1,2,3, 
.. '),2 an arc length (s) along a curve x· =x·(t) is given 
by the integral 

s = f L(x, X(l>, x<2>, X(3), ••• ,X(M» dt , (AI) 

where L denotes the fundamental function and x(,,) 

=d"x/dt". Finsler space is, therefore, regarded as 
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the higher-order space of order one, but the vector y 
is, in general, not necessarily chosen as X(l) [see also 
Appendix. Subsec. (2)]. 

(2) The metric tensor gA.(X, y) of Finsl~r space is de
fined by 

(A2) 

where L(x, y) is the fundamental function and is assum
ed to be positively homogeneous of degree one with re
spect to y. And the angular metric tensor hA.(x, y) is 
defined by 

(A 3) 

where lA = YA/ L, lAlA = 1 (unit vector). It Should be re
marked that gA. becomes positively homogeneous of 
degree 0 in y [i.e., gA.(x, ay) =gAK(x, y) for a positive 
constant a] and is very singular at y = 0, so that gA. 
cannot be expanded in powers of y. From the stand
point of general theory in Matsumoto's sense/ the 
vector y, which satisfies only a linear transformation, 
is not necessarily chosen as xU) [cf. (A 1)], so that the 
relative length (of a vector V) gh(X, y)V"VA differs, in 
general, from the absolute length gA.(X, XU»V" VA .18 

(3) The absolute differential of an arbitrary vector 
V"(x, y) is introduced by 

(A4) 

where r~A(x, y) and C~A(x, y) mean the Finslerian coef
ficients of connection serving as two kinds of gauge 
fields. 19 From (A4), by replacing dy with Dy, the co
variant derivatives are defined as follows1

: 

(A 5) 

'1 av' ." V A = al + C"A V , 

where %~ = a/a~ - N~a/ayV, P..A = r~A - N~C~ v and 
Iv~ = y" F.:l (= FOJ; the symbol 0 means the contraction by 
y. Concerning C"A.(=C~.gvA)' it is assumed to be sym
metric for all the indices, so that 

(A 6) 

holdS good by virtue of the metric conditions DgA• = 0, 
1. e., 

(A7) 

where r"A'= r~.gvA' Of course, gAKill =0 and gA.I" =0. 
Since C"A' becomes positively homogeneous of degree 
-1 in y, the following relations hold good: 

(AS) 

As for r~A and P..A' they are usually assumed to be 
symmetric in 11 and A, but in Wagner space the torsion 
T~A (A 14) appears (see also Sec. II), 

(4) In Finsler space there appear, in general, three 

Satosh i Ikeda 1213 



                                                                                                                                    

kinds of curvature tensors (5 v\" , P v\", Rv\,,) and five 
kinds of torsion tensors (R~", T~", C~", P~", 5~,,). They 
are introduced through the following Ricci identities: 

V"I~I" - V"1"1~=VvRv\,,- V"lvTr" - V"lfi~~, 

v'I~I" - v'I"I~=VvPv\" - V"lvC~" _ v'I~~~, 

V' I~ I" - V' I" I~ = V
V
5v\" - V" I v5~" . 

Their definitions are given as follows: 
first curvature tensor: 

second curvature tensor: 

Pv\" = aF:,~/ay" - 1iC:j1ix~ + F~~C~" - C~,,~~ 

+ C:,aNUay" , 

third curvature tensor: 

Rv\" =2I~,,{1iF:,~/1ix" +F~~F:"}+C:,R~,,, 

R~" =2I~,,{1iNU1ix"}, 

T~" =2I~,,{~,,}, 

P~" = aNUay" - r..~ , 
5~" =2I~,,{C:,,}. 

(A9) 

(AIO) 

(All) 

(A12) 

(A13) 

(A14) 

(A15) 

(A16) 

The symbol 2I~" means interchange of indices A, /1 and 
subtraction.1 In the usual Finsler space in Cartan's 
sense, ~,,=O and 5"",, =0 are assumed [cf. (A6)], and 
R~" =Ro\" and P~" =Po\" hold good. From the defini
tion of P v' w (All), it is rewritten as 

PV"AK=2Iv,,{CIlAKI!I+C~~C'IlKIJ, (A17) 

from which the following relation can be obtained1
: 

(AlB) 

(5) On the other hand, Berwald's curvature tensor 
H v"~" is defined by Berwald's connection coefficient 
G~~ as follows1

: 

(A19) 

By use of the relation between G~~ and r..~ (i. e., G~~ 
=~~ +C~Alo),Hv\" and Rv\" are related to each other 
as follows: 

Hv\" =Rv\" - C~,R\1l 

+2IA,,{C{"lol" +C~"oC\vlo}' (A20) 

In the scalar curvature space, H v,,~. is given, with the 
aid of (2.3) and Hv\" = aR~,,/ayv/ by 

H V"~K = K( R v~ R" K - R v. R"J + 2I AK{ (aK/ay V)y~ R". 

+ L(aK/ay~)(2lvR". -l.R"v-l" Rv.) 

+ L2(a2 K/ay~ayV)h".}. 
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(A21) 

Therefore, if K = const., (A21) reduces to (2.9). 

(6) The folloWing Bianchi identities are used in this 
paper: 

@),,~.{5a",,~ I.}=o, 

@)"~.{R,, "h - C,," aR~.} = 0, 

@),,~.{Ra"IlAIK+P8" "yRr.}=O. 

(A22) 

(A23) 

(A24) 

The symbol @),,~. means cyclic permutation of /1, A, K and 
summation.1 In Wagner space,13 (A24) is extended to 

(A25) 
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Finsler space is a metric space in which the line-element (x,y), instead of the point (x), is chosen as 
the independent variable, where the vector y is regarded as the internal variable assiciated with 
each point x. Therefore, they-dependence characterizes essentially the theory of fields in Finsler 
spaces and the Finsler field shows many peculiar features depending ony. So, in this paper, with 
the aid of the theory of special Finsler spaces such as tangent Riemannian space, locally 
Minkowski space, etc., some physical aspects carried by yare considered by taking into account 
the intrinsic behavior of y. 

PACS numbers: 02.40.Ky 

I. INTRODUCTION 

Since Einstein l used Riemann geometry (or the theory 
of Riemann spaces) in order to develop his theory of 
gravitational field, the so-called prinCiple of "geome
trization" of physical fields has been employed by many 
authors, and as a result, in the case of differential 
geometry, Riemann geometry itself has been general
ized or modified in various ways, Among them, Fins
ler geometry or the theory of Finsler spaces may be 
regarded as a generalized Riemann geometry of the 
first order within the sphere of metrical differential 
geometry (cf. Ref. 2), because the line-element (x,y), 
instead of the point (x), is chosen as the independent 
variable, wherey(=y~;A=1,2, ... ,n;n=4in our case) 
means the (tangent) vector attached to each point x 
(= x"; K = 1, 2, ... ,n; n = 4 in our case) and plays physi
cally the role of internal variable. This way of think
ing is derived from the theory of higher order spaces 
of order M(= 1, 2,3, ... ),3 in which an arc length along 
a curve x"=x"(f)(t is an arbitrary parameter) is given 
by the integral 

s= f L(x,X(I),X(2), . .. ,x(Mj)dt, (1. 1) 

where L denotes the fundamental function and x(c') 

=d"x/df fX (a=1,2" .. ,M). That is to say, Finsler 
space is considered the higher-order space of order 
one (Le., y=x(l)). At any rate, the theory of fields 
in Finsler spaces is essentially characterized by its 
y-dependence. So, in this paper, some structurologi
cal remarks will be made on the phYSical aspects car
ried by the internal variable y. 

All the mathematical definitions and notations are 
referred to in Matsumoto's monograph. 2 

II. ON THE y-DEPENDENCE-I 

Since the vector y is attached to each point as the in
ternal variable, the y-dependence may be likened to an 
introduction of new degrees of freedom representing in
ternal symmetry. From this, it may be said that the 
vector y embodies the concept of "nonlocality" in Yuk
awa's sense,4 where the v2ctorial internal variable is 
expected to resolve the so-called "divergence difficulty" 
(cf. Refs. 4 and 5). In this sense, a Finsler field may 
be regarded as a "nonlocal" field obtained by "nonlocal
izing" a Riemann field. Further, since the concept of 

''non locality " is connected with the "extended model" of 
elementary particle, the y-dependence may also exert 
some influence on the "microcausality" (cf. Refs. 5 
and 6). 

On the other hand, since y is a vector, the y-depen
dence can represent the concept of "anisotropy". 
Therefore, for example, the Finslerian gravitational 
field or cosmology would show some anisotropy inevit
ably and break some kinds of symmetries (cf. Ref. 7). 
However, these concepts of nonlocality and anisotropy 
are taken into account at some microscopic stage, so 
that after a certain kind of averaging process is per
formed with respect to y, the resulting macroscopic 
field would become "local" and "isotropic". This 
problem will be reconsidered in Sec. 4. 

Now, the y-dependence is geometrically represented 
by the coefficient of connection C:~ appearing in the 
following absolute differential2

: 

(2. 1) 

where V"(x, y) is an arbitrary vector, and r:~(x, y) and 
C:~(x, y) denote the Finslerian coefficients of connection 
which are also regarded as two different kinds of gauge 
fields in Yang-Mills' style obeying the prinCiple of 
minimal coupling (cf. Ref. 8). From (2.1), the co
variant derivatives are defined as follows2

: 

DV" = (V'IJdx ~ + (V"' ~)Dy~; 

Vi~=6V"/6x~+P"~V" , 

V"'~= aV"/al+ C:~V", 

(2.2) 

where 6/6x~=a/ax~-N~(a/ayV), N~=y"F~~ and F:~ 
= r:~ -N~C :v' Let gM(X, y) be the Finslerian metric 
tensor. Then, it is assumed from the beginning that the 
metric conditions DgM = 0 (L e., gMI" = 0 and gM'" = 0) 
hold good [see Appendix (1) J. At this stage, one physi
cal aspect should be noticed: As is well known, B,B all 
the gauge fields in Yang-Mills' style are found to be 
absorbed into the covariant derivative with respect to 
x for the purpose of accomplishing. gauge invariance of 
the Lagrangian under some kinds of gauge transforma
tions. Along this line, it may be said from (2.2) that 
for a Finslerian nonlocal field, the "unified" coefficient 
of connection F:~, which is introduced into the co
variant derivative by x, represents the concept of uni
fied gauge field (cf. Refs. 9 and 10). That is to say, 
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the coefficient of connection F:~ may be regarded as a 
unified gauge field betweeJ;l two different kinds of gauge 
fields r:~ and C:~ governing the symmetric properties 
of the external x- and internal .v-coordinates, respec
tively. 

III. ON THE y-DEPENDENCE-II 

In this section, in order to emphasize the y-depen
dence and consider it more concretely, some special 
conditions are imposed on the Finslerian structure from 
the standpoint of the theory of special Finsler spaces. 2 

First, if a point x is fixed and only the vector y at the 
point x is taken into account, then the tangent Rieman
nian space (Mx) at the point x arises, which corresponds 
to an internal space spanned by y itself around the point 
x. This tangent Riemannian space is a four-dimensional 
Riemann space specified by g",,(y), C"",,(Y), and 5V "'K(Y)' 
where C ,,"" reduces to the Christoffel three-index sym
bol derived from g~K' and the first curvature tensor 
5V"'K (A5) becomes the Riemannian curvature tensor. 
However, it should be remarked that the vector y itself 
obeys only a linear transformation, so that the spatial 
structure of Mx must be restricted so as to cope with 
this transformation (see below). 

In the tangent Riemannian space, such a field equation 
as 

S".-~5g".=-T,,~ (3.1) 

may be proposed by analogy with Einstein's one, where 
5,,~ =5 ~~v' 5 =5,,~g"~ and T,,~ means the energy-momen
tum tensor. By virtue of the Bianchi identity (A6), the 
conservation law (5~ -~5o~)I~=0 holds good (cf. Ref. 
11). Further, if the indicatrix Ix, which is a three-di
mensional Riemann space defined by L = 1 in M" is ta
ken into account, then Ix is made flat by use of the 
Gauss equation (A9) under the assumption that 5V"~K of 
Mx is 53-like,2 i. e. , 

(3.2) 

and A = -1, where h". denotes the angular metric ten
sor (A4) [see Appendix (4)]. This flat indicatrix, which 
is nothing but a three-dimensional Euclidean space, 
has been compared to the isotopic space by Asanov. 12 

On the other hand, if A = 0 in (3.2), then Mx becomes 
flat and Ix has a constant curvature of 1 [see Appendix 
(4)]. In tlris case, the above-mentioned linear transfor
mation of y is limited, for example, to the global 
Lorentz transformation (cf. Refs. 12 and 13). 

Next, as another special case, if it is assumed that 
there exists a coordinate system in which the funda
mental function L or the metric tensor g'K (AI) does not 
depend on x, then the Finsler space reduces to the lo
cally Minkowski space prescribed by such geometrical 
conditir)lls as RV"'K =0 and C"~Klv=02.14: In this case, 
p V"~ K = 0 holds good too, so that we have only one sur
viving curvature tensor 5V"~K [cf. (A5)]. And due to the 
condition that C "h I v = 0, the coefficient of connection 
FK of the locally Minkowski space, which represents 

(.l~ 14 
the x-dependence, becomes a function of x alone. If 
F:. is further assumed to be nonsymmetric with re
spect to fJ- and A, then one kind of torsion T:~(=F:. 
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-F~.,) (A5) appears. Concerning this, if T:. is given 
by 

(3.3) 

where a,,(x) is an arbitrary vector, then the space be
comes a special Wagner space. 15 And one interesting 
fact has been known2.15 : if the conformal transformation 
r = L expa(x) is applied to (3.3), then the resulting tor
sion T:~ is given by 

(3.4) 

where a" = ila/ax". Therefore, if a" is given by 0" 

=ilu/ux" [a(x) is a scalar] and a +a=O holds good, then 

'f:. of (3.4) vanishes. This seems to be very signifi
cant, because the scalar (J of the conformal transfor
mation is connected with the Brans-Dicke's scalar 
¢(X)16 in the form ¢-I=Gexp2a(G is the gravitational 
constant)17 and a can playa role of another "measure" 
field cooperating with ¢. In these cases, the third cur
vature disappears, i. e., R v" .. = 0 (or Rv" .. = 0), so that 
vierbein (e1,e1) (or (e1,et); e1=e1exp(-a),et 
= e1 expa;A = 1, 2, 3,4) can be introduced to give F:. 
(or P:.) in the form F:~ = e1(oe!/ilxA) (or P:~ 
=e1(ae~/axA)=F:A+O:a,,) (cf. Refs. 12, 14, and 15) 
and the torsion T:~ (or 'f:,,) plays the leading part in 
the Finsler field, as in the Einstein-Cartan theoryl8 or 
in the theory of new general relativity. 19 Of course, 
.v A (= e 1 y .) obeys the affine transformation or the glo
bal Lorentz group (cf. Refs. 13 and 19). 

IV. OTHER COMMENTS 

In the above, only the v-dependence has been con
sidered mainly and special Finsler spaces such as tan
gent Riemannian space and locally Minkowski space 
have been taken up. In this section, two other topics 
will be mentioned briefly: One is the x-dependence 
represented by the third curvature tensor RV"h (A5) and 
the other is the averaging process with respect to y. 

First, RV"A K is the most analogous curva ture tensor 
to the Riemannian one, but it has, of course, some dif
ferent characteristics. For example, as is easily un
derstood by contracting a and K of the Bianchi identity 
(A7), the Ricci tensor R"A(=R:~K) is not symmetric due 
to the quantity C:. and any field equation similar to 
(3.1) cannot be proposed, because, in general, the 
conservation law (R ~ - ~ Ro ~)I>. = 0 cannot be obtained 
from contraction of the Bianchi identity (A8). There
fore, it is necessary to consider some special form s of 
RV"'K in order to obtain the Finslerian conservation 
laws. For example, if RV"'K is given by, on the analogy 
of (3.2), 

(4.1) 

where K is a nonzero constant, then the above-mentioned 
conservation law holds good and also the Ricci tensor 

becomes symmetric (cf. Refs. 2, 11, and 20). (Some 
other special cases including the Wagner space have 
already been described in a previous paper. 21 

Next, it may be said that the Finsler field itself 
shows more microscopic aspects than Riemannian 
ones, because the vector y is attached to each point 
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as the internal variable. From this viewpoint, there 
occurs a problem of relationship between the micro
and macrofields, so that it is valuable to consider a 
certain kind of averaging process with respect to y. 
This process is geometrically likened, to some extent, 
to the "reduction" from the Finslerian structure to 
some non-Riemannian structure under such "osculating" 
conditions as dyA=E~(x)dx" (cf. Ref. 22). In this 
case, (2. 1) is reduced to 

DV" =dV" + r~ V"dx A
; 

(4.2) 

Therefore, the torsion tensor Tt: (= r~{ - r:,,") corre
sponding to T: A of (3.3) appears, in general, due to 
the "coarse graining" (or the ''nonholonomic'' property) 
associated with the averagif'g process. This torsion 
may be connected with the concept of irreversibility or 
entropy production from a thermodynamical point of 
view (cf. Ref. 23). By the way, if Dy A = 0, that is to 
say, if the vector y is displaced in parallel to itself, 
then the conditions dy A = -N ~ (x, y)dx" are obtained, so 
that if y is obtainable as a function of x from those con
ditions, then r:{ is formally equalized to F:x of (2.2). 

V. CONCLUSIONS 

Thus, some structurological remarks have been made 
on the fields in some special Finsler spaces such as 
tangent Riemannian space, locally Minkowski space, 
etc. Of course, there exist many other interesting 
special spaces/ but much to the author's regret, the 
greater part of them have not yet been used for physical 
problems. Therefore, the author would like to appeal 
to physiCists and geometricians for seeking for many 
valuable applications. 
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APPENDIX 

(1) The metric tensor gM(X,y) is defined by 

gM = ~ rF L2joyAoy" , (AI) 

where L(x, y) denotes the fundamental function, which 
is assumed to be positively homogeneous of degree 1 
with respect to y in order that arc length may be in
variant under any parameter transformation [cf. (1.1)). 
From metric conditions (Dgx. =0), the following rela
tions are obtained: 

aghj ax" = r~" g"K + r:" gAV' 

ogA .jay" = C~I' gVK + C~I' gAV' (A2) 

In the usual Finsler space in Cartan's sense,2 C"," 
(=C~"gvJ is assumed to be symmetric for all indices. 
Therefore, C"A" is uniquely determined by C"A"=~og,,/ 
oy· and becomes positively homogeneous of degree -1 
in y, so that 
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(A3) 

hold good. By the way, the angular metric tensor hA" 

is defined by 

hA" =gA. -1l.1.(=La2LjayAo.v·), 

where lA = YAj L, YA =g~" y". 

(A4) 

(2) In Finsler space, there exist, in general, three kinds 
of curvature tensors (R~A'" P~A'" S:l. 1') and five kinds of 
torsion tensors (T~ '" R~", C~'" P~A' S~j.)' which are in
troduced by the following Ricci-identities: 

V·IAII' - V"I"iA= VVR~AI' - V"lvT~" - V"lvR~A' 

V"iA I" - V"I "IA = VVP~AI' - V·ivC~" - V"I VP~A' (A5) 

V" I A I " - V K I " I A = V YS:AI' - V· I v S~" . 

Their definitions are omitted here for simplicity's sake 
(see Ref. 2 or 21). R~ AI' is called the third curvature 
tensor, derived substantially from F~A; S~A" is the first 
curvature tensor, derived from C: A; and ~A" denotes 
the second curvature tensor, which is an intermediate 
quantity between R~A" and S~A'" In Cartan' s Finsler 
space, T~I' and S~" are also assumed to vanish, but T~" 
appears in the Wagner space (cf. Sec. 3). 

(3) The following Bianchi identities are cited in this pa
per: 

~"M {S;"AI K} = 0, 

~"'" {R~AK - C~a R~K} = ° , 
~"A" {R;"AI" + P;"yR~.} = ° . 

(AB) 

(A7) 

(AB) 

The symbol~"AK means cyclic permutation of }J., A, K 

and summation. 

(4) The Gauss equation gives the relation between cur
vatures Rjjk/ of Ix and Sv"," of M x as follows: 

Rjjk/ =SV"AK Y r Yj Y~ Y~ + gjkgj/ - gjl gjk' (A9) 

where Y~(= oyVjoui ) is the projection operator, ui is a 
parameter of the indicatrix Ix (1. e., yV = yY(u j

); i = 1, 2, 3) 
and gjj (=gAKY~ Y;l is the induced metric tensor of Ix. If 
S"I'AK is S3-like [i.e., (3.2)], then Riju becomes a con
stant curvature of (A + 1), i.e., 

Rjjk/ = (A + l)(gjkgj/ -gj/gjk)' (AlO) 

Therefore, if A = -1, then Rjjk/ = ° and if A = 0, then 
RjJk/ becomes a constant curvature of 1. By the way, 
Sy"," of the three-dimensional Finsler space is always 
written as (3.2), so that the formula of (3.2) is called 
S3-like. 
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Schr()dinger equation with time-dependent boundary conditions 
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A Schrodinger equation for a well potential with varying width is studied. Generalized canonical 
transformations are shown to transform the problem into a time-dependent harmonic oscillator 
problem submitted to fixed boundary conditions. This transformed problem is solved by a 
perturbation technique and gives the evolution of the average energy of the system according to 
the motion of the well. Motions corresponding to a renormalization or compaction group are 
shown to be solvable by separation of variables. 

PACS numbers: 03.65.Ge 

1. PRESENTATION OF THE PROBLEM 

We want to examine the solutions of the Schrodinger 
equation submitted to time-dependent boundary conditions. 
This situation arises, for example, when describing the oscil
lations of a particle in a potential well of time-dependent 
width. 

There are two motivations for this study. The first is 
mathematical; we will see in what follows that the group of 
transformations admitted by the problem is an interesting 
example of Generalized Canonical Transformations (GCT) 
for which the time variable is submitted to a nonlinear 
transformation. 

The second motivation is physical; as far as we know, 
apart from limited attempts with harmonic oscillator-type 
problems with time-dependent frequencies (see Leach 1-3) or 
perturbation methods (see Durand4

), complete analytical so
lutions of a time-dependent Schrodinger equation are very 
scarce (see also Burgan, et aU). This is partly due to the fact 
that quantum mechanists are still arguing about the interest 
of a Schrodinger equation with a time-dependent potential, 
and partly due to the difficulty of obtaining analytical solu
tions for a partial differential equation of two variables. We 
believe that theoretical considerations will remain sterile un
less supported by simple exact analytical solutions, and in 
this respect, this moving-boundary Schrodinger problem is 
an interesting contribution. 

We consider the one-dimensional Schrodinger equation 
in cartesian coordinates, associated with the Hamiltonian 

fz2 a2 

H= ---+v. 
2m ax2 (1 ) 

The solution is limited to the inner part of a potential well, 
constituted of two infinite walls. The left boundary is chosen 
as the origin of position while the right boundary is allowed 
to undergo an arbitrary time-dependent shift. At any instant 
t, the position of the right boundary isLX (t IT) whereL and 
T are unit length and unit time and X is an arbitrary dimen
sionless function. Assuming X (0) = 1, L represents the posi
tion ofthe moving wall at the origin of time (see Fig. 1). The 

·'CRPE/CNRS, Orleans-La Source, France. 

hlUER Sciences, Orleans, France. 

constant value of the potential inside the well is chosen as the 
origin of energies. Under these assumptions the wavefunc
tion must satisfy 

. af/; fz2 a2f/; 
l~= ---, O.;;;x.;;;LX(t), (2) 

at 2m ax2 

f/;(t,x) = 0, Vt, x < 0 or x > LX. (3) 

Since we are interested in evolution problems, we must add 
the initial condition 

f/;(t = O,x) = f/;o(x). (4) 

This problem looks simple, since the Schrodinger equa
tion (2) for a potential well is the same whether the bound
aries are moving or not. However, the moving-boundary 
condition renders the equation unsolvable by the usual 
means. Although the equation is still linear, Laplace or 
Fourier transforms are in this case incompatible with such 
boundary conditions. The reader can easily be convinced of 
the difficulty of the problem by trying a method of separa
tion of variables on (2). The moving-boundary conditions do 
not separate. 

Moreover, if f/;*¢ is to represent a probability density, 
the wave function must be normalized inside the domain and 
verify 

L+ 0000 f/;*f/;dx = 1 

Vao 

o 

FIG. I. A moving boundary Schriidinger equation: the time dependent 
infinite potential well. 

(5) 
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Strangely enough, very little information is available 
concerning the various properties of the wave function when 
it comes to dealing with time-dependent conditions. For 
physical reasons, uniqueness of the solution is required, and 
we can easily show that this necessitates the continuity of t/J, 
at/Jlax, and a2t/Jlax2 with respect to x inside the domain. 
However it is not necessary that t/J,at/Jlax, and a2t/Jlax2 be 
continuous with respect to t. 

The validity of condition (3) is not obvious at all in a 
time-dependent configuration. All we can say is that is en
sures having a unique solution to the problem, and keeps the 
treatment as simple as possible. 

2. FUNDAMENTAL TRANSFORMATION 

Our purpose is to change the unsolvable moving
boundary problem into a solvable fixed-boundary problem 
by means ofa group of transformations. We use here a meth
od generalizing a previous work by the authors (see Burgan,6 

Burgan, et al.,5.7.8 Munier9
) and based on the use of GCT. 

Let us define a new rescaled space coordinate 

x = xlX(t IT), 

a new time variable, - it dO' t-
- 0 X2(O'IT)' 

and a new wave function, 

~t,X) = t/J(t,x). 

(6) 

(7) 

(8) 

Relations (6) and (7) form a particular case ofGCT depend
ing solely on the arbitrary function X. For notation conve
niencewealsowriteX(t IT) = X (t IT). The generating func
tion of the transformation is 

4> = px = pxlX, 

and the momentum is transformed according to 

p=pX. 

(9) 

(10) 

The principle of correspondence of quantum mechanics tells 
us that the momentum is related to the operator - ifliJlax. 
Due to the invariance of Hamilton's equations under a GCT, 
we have 

P- - ifliJlax. (11) 
The new Hamiltonian of the problem reads 

Ii =X2(H + a4» =X2(P _ PX!.'). (12) 
at 2m TX 3 

Using relations (9) and (11), this can be written 

fz2 a2 
• x X' a Ii= - --+ In::---=--, (13) 

2m ax2 T X ax 

(the prime denotes a derivation with respect to the argument 
tiT). 

Since the Schrodinger equation has the same structure 
as the Hamilton-Jacobi equation, it is also invariant under a 
GCT. One can easily show that 

ifza~ =Ht/J. 
at 

(14) 

Substituting now Hamiltonian (13) into Eq. (14), we see that 
the moving-boundary problem has been transformed into 
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the following one: 

l
'fz aliJ_ = fz2 a

2
1iJ . xX' aliJ ---+In::---=--, O<x<L, (15) 

at 2m ax2 T X ax 

1iJ(t,X) = 0, Vt, x <0 or x>L, (16) 

(17) 

This is a fixed-boundary problem corresponding to the same 
initial condition. As we can see, the time dependence of the 
boundary is now entirely conveyed by the gradient term on 
the right-hand side of Eq. (15). 

Although it is possible to use integral transforms (such 
as Fourier or Laplace transforms) for solving Eq. (15), the 
procedure is rather cumbersome. Moreover, there are great 
difficulties (it is probably impossible), in introducing arbi
trary initial condition t/Jo(x) and arbitrary wall motion 
X (t IT) when dealing with integrals along complex time-de
pendent paths obtained by this method. 

Equation (15) is not very easy to study as it is, this is why 
we consider the new wavefunction 

-" - - - - ( m X' X2) t/J(t,X) = X \/2t/J(t,X)exp - i- --=- - . 
2fz X T 

(18) 

After substitution of this relation into (15), we obtain the new 
Schrodinger equation 

2 2-" 

_~ a! + mx2{l2;j, 
2m ax2 2 

(19) 

with 

{l2(tIT) = [X"IX - 2(X'IX)2]1T2 =X 3X IT 2
, (20) 

(the prime and the dot denote differentiation with respect to 
fiT and t IT respectively). 

This last quantity can be regarded as a time-dependent 
pulsation. Equation (19) is consequently equivalent to a har
monic oscillator equation with a time-dependent frequency. 
The new initial condition associated to the problem is 

¢o(X) = ¢(t = O,X) = liJo(X)exp [ - imx2 X'(O)], (21) 
2fzT 

and this relation depends on the time derivative of X at the 
origin. Invariance of the initial condition is obtained only for 
X'(O) = 0, i.e., in the case of a smooth transition ofthe wall 
from rest to motion. 

3. SOLUTION OF THE PROBLEM 

Due to the linearity of the problem, one can express the 
solution as a series. Hamiltonian (19) can be regarded as the 
superposition of a time-dependent perturbation with 
amplitude 

P(X,t) = (m/2)x2{l 2(tIT), (22) 

and of an unperturbed state characterized by {l 2 = O. 
It must be stressed that, in spite of the appelation "per

turbing term" to qualify operator P, the method gives an 
exact solution (in the form of a series) of the problem, what
ever the value of P, which need not be small. Let us write 
f/Jn (xi), the eigenfunctions of the unperturbed problem, and 
¢'n (X), the stationary part of these eigenfunctions. The solu
tion of (19) for {l 2 = 0 is straightforward. We have 
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tPn(X) = (21L )1/2sin(mrxIL); (23) 

consequently 

tpn(x,f) = tPn(i)exp( - iEJlfz), (24) 

is the eigenfunction corresponding to the energy level 

E = ~(1Tn )2. (25) 
n 2m L 

The theory of time-dependent perturbations tells us 
that the solution of the perturbed problem can be decom
posed over the basis of the eigenfunctions of the unperturbed 
state (see Durand4

). 

-"'_ +00 _ _ 

tP(t IX) = L Cp(t )tpp(t,Xj, (26) 
p~1 

(The p = ° state is excluded since it corresponds to a wave
function which is strictly zero). Substitution of this series 
into the Schrodinger equation yields 

. (atpp dCp ) IfzL Cp-_- + tpp--
p at dt 

fz2 a2tp 
= - -LCp ~ + LCpPtpp. (27) 

2m p ax p 

We multiply now this relation by tP: and integrate with re
spect to x over the interval [O,L ], to obtain 

lL dC -
ifzI -!=-<p :exp( - iEpt Ifz)tPpdx 

p 0 dt 

= I ( CptP :Pexp( - iEi/fz)tPpdx. (28) 
p Jo 

Using now the fact that the functions tPq form a orthomor
mal basis, we get _ dC 

ifzexp( - iEqt Ifz)--q 
dt 

= LCpexp( - iE//fz) (L tP : PtPpdx, 
p Jo (29) 

and we finally obtain a differential equation on Cq : 

. dCq " • 
lfz..---:!-. = ..:;..CpPqpexp(I(j)qpf Ifz), 

dt p 

(30) 

where Pqp represents the components of the operator Pin the 
basis tPq , 

Pqp(t) = iLtP:p(X,l)tPpdx, (31) 

and (j)qp the energy of transition between the states q andp: 

(j)qp = Eq - Ep. (32) 

The Schrodinger problem (19) has consequently been 
reduced to the solution of an ordinary differential system on 
C (t ), submitted to initial conditions that can easily be ob
tained from relation (21). If we define 

iJo(x) = tPo(x) = F(xIL), (33) 

we have in the transformed space 

¢o(i) = F(xIL )exp [ - i
mr 

X'(O)] = ICp(O)tPp(X) . 
2fzT p 

(34) 

After multiplication by tP : and integration with respect to x, 
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this relation gives 

Cq(O) = (2L )1/2fexP[( - imL 2U2X'(O)l2fzT] 

X sin(q1Tu)F(u)du, (35) 

with u = xl L. For a smooth transition at the origin, i.e., for a 
velocity X'(O) = 0, the initial condition Cq(O) reduces to the 
sine-Fourier transform of F(u). 

The P components of the perturbation matrix are pq 
easily obtained after substituting relation (22) into (31) and 
integrating. 

Pqp(t) = (m/2)n 2(tlT)i
L 
r(2/L )sin(q1TxIL) 

X sin/p1Txl L )dx, (36) 

or 

Pqp(t) = mn 2(tIT)L 2 f u2sin(q1Tu)sin/p1Tu)du. (37) 

This gives, according to the values of p and q ! with 
p,qE[l,+ oo)J 

_ mL 2n 2 4qp 
Ppq(t) = ~ (q2 _ p2f' for P'fq, (38) 

- mL
2n 2 (~ 1 ) P (t) = - - -, for p = q. (39) qq ~ 6 4q2 

As one can see, the matrix is symmetrical. The diagonal 
term which tends to mL 2 n 216 as q_ 00 , is seen to be domi
nant. One easily shows that for /;;.1, 

Pq,q+j (1 + }Iq) 
---p;;- = /(1 + }12qf(~/6 - l/q2) , 

(40) 

and this quantity is a decreasing function of). 

4. TRANSITIONS 

We want to examine the evolution ofa particle, intially 
described by 

tPo(x) = (21L )1/2sin(n1TxIL) = tPn(x) = F(xIL), (41) 

and corresponding to an eigenstate in a stationary well of 
width L. The system is then submitted to an arbitrary mo
tion X (t IT) and we calculate the final state at time t). 

We supposeX'(O) = ° in order not to have degenerated 
levels in the new system, due to a discontinuity of the veloc
ity. We have 

Cp(O) = 2 fSin/P1TU)Sin(mrU)dU = 8pn . (42) 

There is only one nonvanishing component of the initial vec
tor Cp (0) and we may apply the preceding theory to solve Eq. 
(30) and obtain the solution at instant t). We are then facing a 
delicate point. Is the wall stationary at time t)? In other 
words isX'(t Il equal to zero followed by X(t ) = const,ornot? 
If X'(tIl = 0, it is possible to expand the solution of the prob
lem in the basis of the eigenfunctions of this new stationary 
state t I> and this decomposition may be associated to a mea
surement. If X'(t))'fO, the decomposition process can only 
represent a "photograph" of a non stationary phenomenon 
and it is not obvious whether a measurement can be associat-
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ed to this decomposition. To facilitate the interpretation, we 
choose not only X'(t liT) = 0, but we also stop the motion of 
the boundary from that time on. 

At time tithe eigenfunctions of the stationary well with 
width LX(t.JT) = LXI are 

consequently, 

1/J(t l,x) = (XI)-1/2exP(imx2XI)'ICp(fl)eXp( - iEi/fz ) 
2fzTXI p 

(43) 

(2IL )1/2sin(p1T~)' (44) 
LXI 

¢(tI'X) = IAs(t.)(2ILX.)1/2sin(s1TxILX.), (45) 

and we easily deduce 

As(t.) = 2ICp(t.)exp( - iEpt..lfz) (sin(p1Tu)sin(s1Tu)du, (46) 
p Jo 

Therefore, 

(47) 

and it is apparent that, save for the phase term, the functions 
Cs(f) are the coefficients of probability of transition from one 
state to the other. Starting from an initial eigenstate n, we 

J 

We can define: 

Qpq = L usin(p1Tu)cos(q1Tu)du, (52) 

which gives after integration 

Qpq = (_ 1)1 +P+q[pl1T(p2 _ q2)], for p=/=q, (53) 

Qpp = - 1/41TP, for p = q. (54) 

Consequently, with the help of(36), Eq. (51) yields 

IC;Cp (E(t) 

: ~[2.EpC;Cp + X~. 2. 2. C;PqpCqeXP(iliJpqflfz)] 
X p XX p q 

-i~(~IC'C +2L(2m)1/2 
TX 2p p p 

x'I IE !12C ;Cqexp(iliJpqf Ifz)Qpq]. 
p q 

(55) 

It is possible to determine in the same way, the average of the 
time derivative of the generating function (9). 

fa(/» = / _ px~). 
\ at \ TX 2 

(56) 
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end up with a series defined by (45) and (47). 

1/J(t l,x) = I(2ILXI)1/2exp( - iEs!..lfz)C,(!..)sin(s1TxILXI). 
s 

(48) 

Since the initial vector Cp (0) has only one non vanishing 
component, and since the smooth transition X'I!..) = 0 im
plies a one-to-one correspondence between A s (t ) and C, (f), it 
is clear that the degeneration of the initial state comes solely 
from the nondiagonal terms in the perturbation matrix Pqp . 
This degeneration o/the energy levels is due solely to the vari
ation o/the well. 

5. THE MEAN ENERGY 

Since the function ¢ is not normalized, the mean energy 
of the system is 

(LX j(X 
(E(t) = Jo 1/J*H1/Jdx Jo 1/J*1/Jdx. (49) 

This relation is valid in (x,t) space, with Hamiltonian (2). 
After substituting the value of 1/J and 1/J*, we easily obtain 

l
LX 

¢*¢dx = IC;Cp. 
o p 

(50) 

Hence 

(51) 

I 
We have 

Ip C;Cp(~~) = - 2 T~~2 I'IC;Cqexp(iliJpJlfz)Ppq 
p q 

+ i~ 'I 'IC;Cqexp(iliJpJlfz)E !/22L (2m)lf 2Qpq. 
TX p q 

(57) 

The average value of operator jj in space (x,t) is 

(E(f) = iL17l*H¢dx/iL17l*17ldx, (58) 

and since 
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Collecting up these different energies, we see that 

(E) = (;2) - (aa~)' (61) 

This relation can be compared to the transformation of 
the Hamiltonian (12). The evaluation of averages is compati
ble with the Generalized Canonical Transformation. 

We notice that, in the case of a linear adiabatic motion 
(see Burgan6

) 

X(t IT) = at IT + 1, (62) 

with a< 1, then 

aa~ = :t(~)= pxa 

T(atIT+ If 
_ apx 

T' 

Consequently, relation (61) gives to zero order 

(63) 

(E) = (EIX2). (64) 

This relation is simply the one we obtain from elemen
tary adiabatic theory, saying that there is to order zero no 
degeneration of the levels. "'(x) being the stationary solution, 
the adiabatic solution reads 

(65) 

Finally, we can determine directly the energy in the 
transformed space: 

(E(t) = f-~·H~dX/iL~.~dX' (66) 

with 

i
L 
'" '" ",·",dx = LC;Cp, 

o p 

(67) 

and we obtain: 

LC;Cp(E(i) = LEpC;Cp + I IC;CqPpq 
p p p q 

Xexp(iwpqflli). (68) 

If the transition between t = 0 and t I is such that 
X (0) = X (t I) = 0 many terms vanish in the various energies 
and we have 

(E) = ;2(~EpC;Cp) / (~C;Cp) 
= ;2 [(E) - (2: LC;CqPpqexp(iwpqflli)) /(LC;Cp)], 

p q J' p 

(69) 

6. CONCLUSION 

As a conclusion, we notice that the general problem 
becomes much simpler for n 2 = 0, i.e., when the perturba
tion in the transformed space becomes zero. Direct integra
tion ofEq. (20) shows that it corresponds to a linear varation 
of X with respect to time. 

X= 1 + tiT. (70) 

After substitution into (7), we obtain the time 
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transformation: 

f=tl(l+tIT). (71) 

This particular case was already studied by the authors 
(see Burgan,6 Burgan et aJ.1·s) and corresponds to what we 
called "time renormalization." Indeed we see that for 
tE[O, + 00), then tE[O,T]. The time variation is therefore 
bounded in the transformed space. 

The second interesting case occurs for X 'IX = al2 
= const in Eq. (15). We easily see that the corresponding 
time transformation is logarithmic: 

a ~ = log( 1 + a ~ ). (72) 

The variation of fis not bounded any more as in the renor
malization case, but it is drastically reduced, hence the de
nomination "logarithmic compression." 

A solution by separation of variables leads to an ordi
nary differential equation, the solutions of which can be ex
pressed in terms of parabolic cylinder functions in the inte
gral form (the coefficients of the equation being complex, the 
solution cannot always lead to Hermite polynomials). The 
study ofintegration paths in the complex field are fairly easy, 
the introduction of boundary conditions however necessi
tates the search for roots of integral equations and this can be 
done only numerically. 

These two particular cases are the only ones which al
low relations (15) and (19) to be solved by separation of varia
bles. Ifthe variation ofthe well is arbitrary, we use numerical 
methods for solving the Cp (f) equation. This numerical and 
analytical study is done in a space with fixed boundary con
ditions. The constant potential has become a harmonic oscil
lator potential with time-dependent frequency. 

Other Schrodinger problems with variable potentials 
can be studied with similar methods. In particular, the 
Morse potential can be generalized to a law with time-vary
ing coefficients. It must however be stressed that, whenever 
the spatial domain (possibly time-dependent) is made ofsev
eral sub-domains with different potentials, great difficulties 
arise in writing and treating the junction conditions between 
the different zones. 
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A practical method suitable for both analytic and numerical computation of propagators for 
multidimensional quadratic Hamiltonians in presented. The traditional two-end-point problem is 
replaced by a manageable initial-value problem. As a by-product, the classical path and action are 
also obtained as a solution to an initial-value problem. The method is illustrated analytically as 
well as numerically by solving for the motion of a particle in a constant magnetic field. 

P ACS numbers: 03.6S.Sq, 03.20. + i, 02.30.Jr, 02.60.Nm 

I. INTRODUCTION 

There are three reasons for the special role played by 
quadratic Hamiltonian in both classical and quantal physics: 
(a) there exist a few important physical systems governed by 
such Hamiltonians; (b) they can serve as a first approxima
tion (via perturbation or variation techniques) to more com
plicated Hamiltonians; and (c) they are often analytically 
solvable. Indeed, the formal solution for the propagator in 
the quadratic Hamiltonian case has been known for many 
years. 1 The amplitude to go from the point (q',t ') to the point 
(q" ,t ") is given by the semiclassical expression 

K (q"t" ,q't') 

= det --- ex-S [ ( 
1 a

2
s )]112 ( i ) 

- 21Tifz aq;aqi' p Ii cI , 
(1) 

where Sci = s:~ L (q,q,t) dt is the classical action for the 
path determined by the two end points. 

Equation (1) is exact for quadratic Hamiltonians. Its 
usefulness depends, however, on the availability of an ana
lytic solution to the classical equations of motion. If such a 
solution cannot be found, the two-end-point problem can 
present a formidable numerical task. A partial solution cir
cumventing the classical equations of motion has been re
cently proposed. Using path-integral technique, Marshall 
and Pe1l2 show that, under certain simplifying assumptions, 
one can evaluate the determinant in Eq. (1). 

The purpose of this paper is to present an initial-value 
approach to the determination of the multidimensional 
propagator K, suitable for both numerical and analytic cal
culation. As a by-product, the classical path and action are 
obtained as a solution to an initial-value problem. This work 
is an extention of the work reported earlier3 on the one-di
mensional case. 

Section II describes the initial-value formulation for the 
propagator K. In Sec. III we establish the connection with 
the semiclassical expression (1). As an example, the motion 
of a particle in a constant magnetic field is solved in Sec. IV 
first analytically, and then numerically 

II. INITIAL-VALUE FORMULATION 

We shall take our Hamiltonian to be of the form 

with a and b symmetric and all coefficient real. Our only 
assumption is that a is a regular time-independent matrix 
and that the other coefficients remain finite at t = O. In par
ticular, we do not assume that a is positive definite.2 An 
example with nondefinite matrix a, is given in Ref. 3. Our 
first step will be to diagonalize a. Let Q be a real orthogonal 
matrix diagonalizing a, that is, QaQ = a with a diagonal. 
(Here - denotes the transponse.) Defining, similarly, 
b =QbQ etc., we have in terms of the transformed coordi
nates and momenta, (t}) = Q (q) and (p) = Q (p), 

Since neither the commutation relations nor the properties 
of H are changed by the above transformation, we shall 
henceforth assume that a has already been diagonalized and 
drop the caret from all symbols. (In order to keep qi and Pi 
time-independent, we had to assume a constant matrix a. 
Had a been diagonal to start with, the assumption could be 
relaxed.)3 

Given the Hamiltonian H, we seek a solution to the 
Schrodinger equation 

iii aK = HK 
at 

subject to the initial condition 

n 

K (qt,q't') - .. II b(qi - q;) . 
(-_I j= 1 

(3a) 

(3b) 

From the path-integral approach4 we know that the propa
gator K is given as a product of a modulating factor F (t - t ') 
(independent of q and q') times exp[(illi) Sci (q t,q't ')]. We 
therefore substitute in Eq. (3) 

K = F(t - t ') exp[(illi)S(qt,q't')] , 

to obtain 

(4) 
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ifz[Pp· + ~(a a
2
s + 1 C)] = as + H (q, as ,t). (5) 

£.. II aq} 2 II at aq 

The ansatz 

as (as) at+H q'aq,t =0, 

-+ ~ a··-+1e .. =0, F (a 2s ) 
P kllaq} 211 

with 

gives (in matrix notation) 

and 

a + f + ({3)(d) + ({3) a(fl) = 0, 

( P) + (e) + 2y(d ) + c( P ) + 4ya( fl ) = 0, 

r + b + rc + cy + 4yay = 0, 

(6) 

(7) 

(8) 

(9a) 

(9b) 

(9c) 

P(t)=p(to)exp[ -Ltr(2ay+~e)dt']. (10) 

In the above we have chosen (without loss of generality) 
t' = 0 for the initial time. Also, the explicit dependence on 
the initial position q' has been suppressed. Thus, 
S (q,t )==S (qt,q'O). In order to obtain the appropriate initial 
conditions for Eqs. (9) and (10), we shall invoke the represen
tation of the delta function as a limiting form of the free 
propagator, that is, 

1 [(q;_q;)2] 8( ') (11) 
(

., )1/2 exp -, - q; - q; , 
11" /L J /L;l I-D° 

where A; are constants. Using this representation, namely, 

K=p(t)exp[.i.s(q,t)] _ IT __ 1_ 
fz I-D° ; = 1 (11"A;f )1/2 

X [ 
(q; - q;)2] 

exp -
A;f 

(12) 

withS (q,t) given by Eq. (8), we obtain (up to terms of order t) 

and 

q~2 
a(t)-ifz L -'- + a(O) , 

A;l 

fl,.(t)- - 2ifzq; fl (0) , +;, 
/L;f 

() 
£ ifz • .(0) 

y;j t -u;};:; + rij 
, 

(l3a) 

(13b) 

Substituting these expansions in Eqs. (9b) and (9c) and set
ting the coefficients of t - 2 and t - 1 equal to zero, we secure 

(14) 
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and 

(fl) - - ~ a-I (q') - !a - I (d) - H a - Ie - ca - 1 ](q') 

2t (15a) 

1 I [-I --I] Y _ - a - - 1 a e + ea . 
4t 8 

(15b) 

Here e and (d) are evaluated at t = 0. Since aCt ) does not 
enter Eq. (9a), the value of a (0) cannot be determined in the 
same manner. However, by using the explicit expressions (8) 
and (13) in Eq. (12), we have 

K =P(t) exp [ ~ (a + Lfl;q; + L Yijq;qj»)] 

- [J1I 8(q; - q;)] 

xexp[~ (a(O) + Lfl~O)q; + L t1J)q;qj»)] . 

Comparing Eq. (16) with Eq. (3b), we obtain 

hence [with the aid of (13) and (15)], 

a_1- (q') a -I(q') + !(q') a -I(d) 
4t 

(16) 

(17) 

+ !(q')[3a -Ie - ca -I ](q') . (15c) 

Finally, by Eqs. (13b) and (14) 

n 1 
P(t)- II = ----:-

;= 1 (4m·fza;;l)1/2 (deta)1/2 (411"ifztr/2 
(l5d) 

Using the last result and Eq. (I5h), it is not difficult to show 
that Eq. (10) for the modulating factor P(t) can be rewritten 
as 

pet) = lim 1 1 
'o-D° (deta) 1/2 (411"ifztoyI2 

xexp[ - L tr(2ay+~e)dtl]. (18) 

Let us review that has been accomplished up to now. In 
order to evaluate the propagator K, the first-order differen
tial equations (9), subject to the initial conditions (15), must 
be solved. Starting with Eqs. (9c) and (15b) we solve for Yij' 
then [by (9b) and (15a)] for Pi! and finally (by quadratures), 
for a and F. This can be accomplished analytically in a few 
cases. In general, we have to resort to numerical integration. 
Formulated as an initial-value problem, the numerical eval
uation of K (as opposed to the two-end-point formulation) is 
straightforward and fast. In this respect, note that being in
dependent of q;, Yij (t) can be calculated "once and for all." 
An example of such a calculation is given in Sec. IV. 

III. CONNECTION WITH THE SEMICLASSICAL 
EXPRESSION 

In this section we establish the connection between the 
semiclassical expression (1) and our initial-value formula
tion for the propagator K. As a by-product we shall obtain 
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the classical path and action as a solution to an initial-value 
problem. 

A. The classical path 

With the Hamiltonian (2), the classical equations of mo
tion are 

(q) = 2a( p) + c(q) + (d ), 
(19) 

(p) = - 2b (q) - c(p) - (e). 

These equations together with the boundary conditions 

qi(t ') = q; and qi(t") = q;' , (20) 

determine the path completely. Consider the fOllowing 
change of variables 

(p) = (:) = (p) + 2y(q). (21) 

Substituting the above expression for (p) into the equations 
of motion, we obtain 

[( iJ) + (e) + 2y(d) + c( p) + 4ya( p)] 
+ 2[Y + b + yc + iy + 4yay](q) = (0) . (22) 

If this equation is to hold for any (q), (P) and y must satisfy 
Eqs. (9b) and (9c). [Conversely, each solution of (9a) and 
(9b) fulfills (22).] Thus, given (P) and y, the classical path is 
determined as the solution to the first-order equation 

(q) = [4ay + c](q) + [2o(P) + (d)] 

with the initial value 

(q(t H»~ = (q") . 

(23a) 

(23b) 

In the Appendix we demonstrate that the above solution, 
with (P) and y determined by Eqs. (9) and (15), does indeed 
pass through the point (q') at the time t' = O. 

Can we use the initial condition (q(t' = 0» = (q') in
stead of (23b)? Inserting the expansions for (P) and y [Eq. 
(15)] into Eq. (23a), we end up with an identity 

(q) = ~ [(q(t» - (q')] + O(t). 
t 

Thus, the two-end-point classical problem separates neatly 
into two parts: the point (q') is used to determine (P) and y 
and the point (q") serves to determine the path (q). Equation 
(23a) must be integrated backwards in time. 

B. The classical action 

The Lagrangian for the system (2) is 

L = LPiq,-H 

= (p)(q) - [(p) alp) + (q) b (q) + (p) c(q) 

+ (p)(d) + (q)(e) + f] . (24) 

Inserting(p) from Eq. (21) and usingEq. (9) fora, <p)and y, 
we obtain 

d - d L = - [a + (P)(q) + (0 y(q)] = -S(q(t),t). 
dt dt 

(25) 

Hence, 
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Sci = ('. L dt = lim [S (q(t "),t ") - S (q(to),to) 1 . Jo to-O~ 

Now, by Eq. (15) and the Appendix 

S(q(to),to)-L (q,(to) - q;)2/(4aii to) 

that is, 

Sci (q" t " ,q'O) = S (q(t "),t ")==S (q" t ",q'O) . 

(26) 

(27) 

(28) 

The classical action is therefore that solution of the Hamil
ton-Jacobi equation (6), which satisfies the initial condition 
(27), namely, 

Sci (q" t " ,q'O) - S ~ee (q" t " ,q'O) . 
t"'-~+ 

(29) 

C. The determinant I a2s/aQ:aq71 
Having identified Sci with S as given by Eq. (8), we no\, 

proceed to calculate the determinant la2 S / aqiaq; I. Accord
ing to Eqs. (8), (9b), and (lSa), the matrix A where 

Aij=a2S /aqiaq; = ap,;aq; , (30) 

satisfies the differential equation 

A = - [4ya + C] A , 

with the initial condition 

I I A-- -a-. 
1-.0' 2t 

(31a) 

(3Ib) 

The determinant of A can now be fixed using a lemma due to 
Jacobi5: 

detA (t) = detA (to) exp [ - J: tr(4ya + C) dt ,]. (32) 

This result is valid as long as the integral in the exponential 
function exists. Incidently, it serves to show that A (t) is a 
regular matrix at all times, (when it exists) provided it is 
regular at t = to. Letting to~ and using the initial condition 
(3 Ib). we have 

detA (t) = lim ( __ l_)n _1_ 
<,,--.0' 2to deta 

xexp[ - f tr(4ay + c) dt'] , (33) 

where trX = trXhas been used. Comparing with Eq. (18). 
we conclude 

(34) 

Since detX = ded, the last result is identical with the semi
classical expression in Eq. (1). 

IV. EXAMPLE 

As an illustration to the initial-value approach to prop
agators and classical paths, we shall treat the motion of a 
particle in a constant magnetic field. Using B = VXA with 
A = (O.Bql.O), the Hamiltonian for this motion is given by 
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H=_1 (p_ ~A)2 
2m C 

= (pi + p~ + pD/(2m) + 2mCli qi - 2oJP2 q l> 

w=:.eB /(2mc) . (35) 

Hence, 

all = a22 = a33 = l/(2m), bll = 2mw2, C21 = -2OJ, 
(36) 

and all other coefficients vanish. The equations of motion 
(9), (7), and (23) take the explicit form 

a+(l1i +11~ +I1D/(2m) =0, 

PI - 2oJ112 + 2(YII 111 + YIZ I12 + Y13113)1m = 0, 

P2 + 2(YI2 111 + Y22l1z + Y23113)/m = 0, 

P3 + 2(YI3 111 + Y23112 + Y33113)/m = 0, 

rll +2mw2 -4wYI2 +2( ril + ri2 + ri3)/m = 0, 

rl2 - 2oJY22 + 2( YII YI2 + YI2 Y22 + YI3 Y23)/m = 0, 

rl3 -2OJY23 +2( YII YI3 + YI2 Y23 + YI3 Y33)/m = 0, 

r22 +2(ri2 + Yz2 + Yz3)/m = 0, 

r23 + 2(YI2 YI3 + Y22 Y23 + Y23 Y33)/m = 0, 

r33 +2(~3 + Yz3 + ~3)1m = 0, 

F + F(YII + Y22 + Y33)/m = 0, 

ql = 2(Yllql + Y12q2 + Yl3q3)/m +111/m , 

ih = 2(Yl2ql + Y22q2 + Y23q3)/m -2OJq\ +l1z/m, 

q3 = 2(Yl3ql + Y23q2 + Y33q3)/m + 113/m, (37a) 

with the initial conditions (up to terms of order to) 

a = m(qi2 + q~2 + q~2)/(2to) - mwqi q~, 

111 = -mqi/to-mwqi, 112= -mq~/to+mwq;, 

113 = - mq;lto, 

and 

YII = ml(2to)' YIZ = mw/2, Y13 = 0, 

Y22 = ml(2to), Y23 = 0, Y23 = ml(2to), 

F = (mI21Tifzto)3IZ, 

A. Analytic solution 

Inspection ofEq. (37) reveals that 

(37b) 

(37c) 

YI3 = YZ3 = 0, YI2 = mw/2, and Y33 = ml(2t); 
(38a) 

hence 

YII = Y22 = (mwI2) cotwt. 

The rest follows straightforwardly: 

113 = - q~ It, 111 = - mw(qi cotwt + qi), 

{3z = - mw(qi cotwt - qi ), 

(38b) 

(38c) 

a = (mw/2)(q;2 + qi2) cotwt + mq'/1(2t) - mwqi qi, 
(38d) 

F = [ml(21Tiflt)] 1/2mw/(21Tifl siOUJt). (38e) 
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Finally 

q3 = q~ + A3t It", 

ql = q; + [(A IS + A2c)(1 - cos2wt) 
+ (A IC - AzS) sin2UJt ]/(2s), 

q2 = qi + [ - (A IC - AzS)(1 - cos2OJt) 

+ (A IS + A zc) sin20Jt ]/(2s) , 

where 

(38f) 

Aj=:.(q;' - q;), i = 1,2,3, and s=sinUJt", c=coSUJt". 
(38g) 

These results are well known. 6 

B. Numerical solution 

In order to check the feasibility of the numerical scheme 
proposed in Secs. II and III, we solved numerically the dif
ferential equations (37a) with the initial conditions (37b) and 
(37c), using (q',t') = (1,1,1,0) and (q",t") = (2,2,2,1) as the 
two endpoints, and setting m = w = Ii = 1. Rather than 
bothering with storage of partial results and numerical qua
dratures, we simply lumped together all the 14 unknowns of 
Eq. (37a) into a single vector, and used a Runge-Kutta rou
tine to integrate the system, starting with to = 10 -3. The 
equations were integrated twice. On the forward swipe the 
coordinatedqj(t)werekeptdummyuntiltheendtimet" = 1 
has been reached. The backward swipe then generated the 
path qj (t) (and regenerated all the other quantities). The re
sults of both swipes were compared with values obtained 
from the analytic solution (38). All six significant figures 
printed in the output agreed. At this stage we felt that the 
feasibility of the method has been demonstrated, and no fur
ther checks have been performed. 

V.SUMMARY 

A practical method suitable for both analytic and nu
merical computation of the propagators for multidimension
al quadratic Hamiltonians has been demonstrated. The tra
ditional two end-point problem has been replaced by a 
manageable initial-value problem. As a by-product, the clas
sical path and action are also obtained as a solution to an 
initial-value problem. Work on application of this exact 
method to the approximate determination of propagators for 
more a complicated system, is in progress. 

APPENDIX 

The purpose of this appendix is to show that the path 
determined by Eq. (23) goes, in fact, through the initial point 
(q',t' = 0), that is, [q(t' = 0)] = (q'). Let Q be a matrix solu
tion to the equation 

Q = [4ay+ cJ Q, 

with the initial condition 

Q(t") = 1. 

(AI) 

(A2) 

From Jacobi's lemma5 [see discussion following Eq (32)J, we 
know that Q - I(t ) exists. Hence the solution to Eq. (23) can 
be written as 

Yoel Tikochinsky 1227 



                                                                                                                                    

(q) = Q {(q") - S'" Q -1 [2a(P) + (d)] dt'}, (A3) 

Let to be a fixed time and let 0 < t<,to. Then, by Eq. (ISb), 
[4ay + c] = (1/t )[1 + 0 (t)] and 

Q(t) = Q(to) ~ [I + O(t)] == Q(to) ~B(t) (A4) 
to to 

is a solution of (AI). Substituting (A4) in (A3) we have 

(q) = Q (to) ~ B (t) {(q") 
to 

_ ('0 B- 1 (t ') !!L Q - 1 (to) [2a( P) + (d)] dt' 
), t' 

-f" Q -1 [2a(P) + (d)] dt'} 

= Q (to) ~ B (t) ('0 B- 1 (t') t?2 
~ 1 t 
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xQ -1(tO)(q') dt' + O(t), (AS) 

where Eq. (ISa) has been used for the last step. Performing 
the integration [note that B (t)== I + 0 (t )], we secure 

(q) = (q') + 0 (t). (A6) 
Q.E.D. 

'See, for example, M. K. Berry and K. E. Mount, Rep. Prog. Phys. 35, 315 
(1972), and references therein. 
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'R. Bellman, Introduction to Matrix Analysis (McGraw-Hill, New York, 
1960), p. 167, 
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High-energy behavior of phase shifts for scattering from singular potentials 
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The high-energy behavior of the Jost function in nonrelativistic potential scattering theory is 
studied for potentials, strongly singular and repulsive at the origin. To be able to give the result in 
an explicit form, we specialize to the S wave and to pure inverse power potentials. However, the 
method works for a large class of potentials, and we report briefly on some other cases. We use an 
asymptotic method, which can be described as a generalization of the JWKB method to arbitrary 
order, with rigorous error bounds. Some numerical results are given. 

PACS numbers: 03.80. + r, 11.80.Et 

1. INTRODUCTION 

Recently, there has been some discussion in the litera
ture lA about the true high-energy behavior of the phase 
shifts for scattering from singular potentials, in particular 
from the inverse power potential, 

V(r) = g2r- P, p> 2. (1) 
As shown by several authors, 1.5-14 most rigorously in 

Refs. 1 and 14, this high-energy behavior is correctly given 
by the JWKB approximation. In fact, the present author 
showed in Ref. 10, and the same result is implicitly contained 
in Ref. 5, that the JWKB approximation and successive 
higher-order corrections to it can be arranged to form a 
whole asymptotic series as the energy goes to infinity. 

This short paper is intended to show how this asymptot
ic series can be constructed with complete mathematical rig
or, and with strict error bounds on the rest terms. The meth
od used is the same as in Ref. to, and rests heavily on the 
results of Olver (Ref. 15 and original work referred to there). 

The paper is organized as follows: in the next section 
asymptotic methods are used to obtain approximations to 
the wavefunctions for high energy, valid uniformly in r. Er
ror bounds are provided to any order, explicitly demonstrat
ing the asymptotic character of the approximations. For 
convenience we restrict ourselves to S waves and to the po
tential (1), since then most integrals are analytically 
calculable. 

In Sec. 3 we give the asymptotic series for the Jost func-
tion and for the phase shift, including error bounds. Section 
4 is devoted to the calculation of higher-order terms in the 
series of Sees. 2 and 3. As can be expected, complexity grows 
fast with the order, so we stop after a few terms. 

In Sec. 5, we discuss what can be said for other poten
tials and for I =I 0, and in Sec. 6 we give some illustrating 
numerical results. 

2. ASYMPTOTIC APPROXIMATION OF THE 
WAVEFUNCTION 

Consider the S-wave Schrooinger equation with the po
tential (l). In the scaled variable s, 

s = rlro, ro = (k /g) ~ 2/p, (2) 

a)Permanent address: Institute of Theoretical Physics, S--41296 Giiteborg, 
Sweden. 

blLaboratoire associe au Centre National de la Recherche Scientifique. 

this equation reads 

[:s: + vv(s) ]u(roS) = 0, 

where u = rlJl is the reduced wavefunction and 

v(s) = 1 - s ~P, v = kro = gl/Pk I ~2/p. 

(3) 

(4) 

Here, v is the large parameter, in which we shall write the 
asymptotic series. On Eq. (3) we perform the Liouville trans
formation (Ref. 15, p. 191), 

5= .r (1-S~p)1/2ds, z= _(~)2/3, 

with 

( dZ)I/~ ( v(s) )1/4 
w(z) = - ds u(roS) = _ z u(roS)· 

This gives the new differential equation 

w" (z) = [vz + X(z)] w(z), 

where the function 

(5) 

(6) 

(7) 

5 5 [v' (s) p - 4v" (s)v(s) (8) 
X (z) = 16r + 16v3(s) z 

is regular at z = 0, corresponding to the turning pont s = 1, 
r = ro, but has strong singularities at the other zeros ofv(s). 
Equation (7) is completely equivalent to Eq. (3). Equation 
(5) defines a conformal mapping from the complex s plane to 
the complex z plane of a region, containing the whole posi
tive real s axis, which is mapped on the real z axis with s = 0 
corresponding to z = + 00 and s = 00 corresponding to 
Z= -00. 

At this point we take advantage of the specialization to 
the S wave and to the potential (1) to get the following explic
it form of the transformation 16: 

5= -Bo -,- - = _v3/2F -,1 + -;-;v (9) 1 (3 1) 2 (3 1 5 ) 
P 2 P 3p 2 P 2 

and 

z= -v[~ F(~ ,1 + ~ ; ~ ;v)t3

• (to) 

Here, Bo is the incomplete beta function 17 and Fis the hyper
geometric function. Asymptotically, Eq. (9) gives the follow
ing relations with thes variable (iargsl <1T/p): 
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5= 

[
_2_SI-P/2 __ 1_B(~,~ + ~) 
p-2 p-2 2 2 p 

+ 0 (Sl + P/2)] exp [ 3;i sgn(args)] for s---->D, 

2.(1 - S-p)3/2 + 0((1 - rP)5/1) for s-l, 
3p 

s- ~ B(T,I- ;) +O(SI-p) for S-oo. 

(11 ) 

For z this implies 

for s---->D, 

for s-l, 

(12) 

The points z ± ,corresponding to s = exp( ± 21Ti/p), where 
X (z) has singularities can be obtained directly from Eq. (5). 
The result is that z + is in the lower half plane with its argu
ment varying continuously ifp is varied, from - 1T/3 for 
p = 2 through -1T/2 for p = 4 to approach -21T/3 for 
p- 00. It is never close to the real axis, I Imz ± I ~ 1. 8. 

On p. 417 of Ref. 15 we find a very useful theorem about 
the solutions of Eq. (7). To apply it, we define the following 
functions: 

Pj(z) = Ai(pjz), Po = 1, P ± I = exp( + 21Ti/3), 
(13) 

where Ai is the Airy function, and Ao(z)= 1, 

Bn (z) = !z-1/2 f dz Z-1;2 [x(z)An (z) - A :(z)], 

An+l(z)= -~B~(Z)+~f~ooX(Z)Bn(Z)dZ' n=0,1,2,.··. 

(14) 

An and Bn are real analytic functions in the z-plane cut 
from z ± to infinity along the level curves of exp~~3/2). They 
have strong singularities at z = z ± . 

Direct application of Olver's theorem 9.1 (Chap. 11 of 
Ref. 15) now gives that for each integer N and point aj in the 
cut z plane Eq. (7) has a solution WN,j (v,z), satisfying 

[(N - 1)121 A (z) 
wN.j(v,z} = Pj (yl/3Z) n~o ~n 

[Nil-II B (z) + V- 4/3p ~(yl/3Z) '" _n _ + E . (v,z). 
J n~o yln N,) 

(15) 

The error term EN,j and its derivative are subject to certain 
bounds given in Ref. 15, (p. 418) for odd N and in Ref. 18 for 
even N, see Eqs. (21) and (22) below. The solution wN ,' is 
supposed to be fixed by some boundary condition at the 
point z = a,; therefore EN" is zero at this point by definition. 

Let now Ej be the functions 

E,(z) = lexp[1(p,z)3/2JI , j=O,±l, (16) 

where the principal value is taken for the fractional power 
and let S, be the sectors 
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(17) 

of the z plane. Then Ej > 1 in.Sj, < 1 in the other two sectors. 
Define further the auxiliary functions~, NJ (see Ref. 

15, p. 415 for details) by (cyclic enumeration) 

Mj(z) = {El+1 (z) IPj+ I (z) 12 + EJ-I (z) IPj - 1 (z) 12j1/2, 
(18) 

NJ(z) = {EJ + I (z) IP; + I (z) 12 + E 1 -I (z) IP; -I (z) 12 J 1/2, 

the constants J.L by 

J.LI = sup{1TlzII/2MJ(z)J, zESj _1 uSj+I' 

J.L2 = sup[1TEj _ 1 (z)Mj(z) IZI /2pj _ I (z) 1 J, ... , (19) 

J.L3 = sup{ 1TEj -I (z)~(z) Ip; -I (z) 1 J, 
and the symbol r by 

r c(f) = L 1 f'(z) dz I· (20) 

r c denotes the total variation of the functionfalong the 
curve C in the complex z plane. 

Define finally !.t'j to be a piecewise twice differentiable 
curve without singular points between ajand the point z, 
such that Ej(x)is nonincreasing as x moves from aj to z. 

Then the bound for the error term is 

To identify the different solutions WN,j ofEq. (7) with 
the different physical solutions of Eq. (3) we use the apro
priate boundary conditions, that is 

qy(k,r) _ 2 - 1I2g - 1!2rfJ/4 exp( -
,--0 

2g _ (P _ 2)/2) --r 
p-2 

(23) 

for the regular solution qy and 

f(k,r) - exp(ikr) (24) 
r-.... oo 

for the Jost solution! The latter function is exponentially 
small when Im(kr)- + 00, that is when 
1m {v( - Z)3/2J_ + 00. This is where P _ I (yl/3Z ) is exponen
tially small, and we can identify 

( 
_Z)1I4 

qy(k,r) = CR(N,v) -- wN,o(v,z), 
v(s) 

f(k,r) = CJ(N,V)( - Z)1/4WN' -I (v,z), 
v(s) 

(25) 

where the coefficients C R.J are independent of z, but depend 
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on the parameter v and on the number N of terms used in w. 
Note that there is no asymptotic approximation in

volved in Eq. (25)-in each of the two equations the left- and 
right-hand sid~s are equal since they are solutions of the 
same (though transformed) differential equation, satisfying 
the same boundary condition. Moreover, CR •J can be deter
mined by using the asymptotic formulas for the Airy func
tions involved in w, putting a o = + 00 (corresponding to 
r = 0) and a -I = 00 Xexp( -21Ti/3) [corresponding to 
Im(kr) = 00] and comparing with Eqs. (23) and (24). This 
gives 

CRI(N,v) 

=(21T)-1I2kI/2v-1/6exp[ - P:2 B(+, ~+ ;)] 
X [I + Nfl (-IY .r::..], 

n= I v" 
(26) 

where 

Y2n = lim An (z), /32n = lim An(z) = 0, 
z- + 00 z---+ - CD 

(27) 

Y2n+1 = lim zII2Bn(z), /32n+1 = lim (-Z) 1I2Bn(z), 
z-- + 00 z __ - 00 

are real constants. Since Eqs. (8) and (12) imply that 

Ix (z)1 <const/(l + Iz12) (28) 

outside the neighborhoods of Z ± it is possible to prove (Ref. 
15, p. 419) that An (z) and zl/2Bn (z) are uniformly bounded 
outside some neighborhood of the cuts. It then follows that 
the limits in Eq. (27) exist and are the same in a large sector 
around the positive and negative real axis, respectively. 

It also follows that the total variations in Eqs. (21) and 
(22) are finite and therefore that 

(29) 

uniformly in z outside some neighborhood of the cuts, in 
particular along the whole real axis. 

Note that the fact that EN.) is zero at the point z = a) 

where we compare Eq. (25) with Eqs. (23) and (24) implies 
that Eq. (26) is an exact relation, without any error term. 
However, in the wavefunctions of Eq. (25) we still have the 
error terms implied by Eq. (15). 

3. THE PHASE SHIFT 

Now that we have good approximations to the wave
functions, and can control the accuracy of those approxima
tions, we go on to determine the phase shift. The simplest 
way to determine the Jost function F (k ) is to use Corollary 2 
of Theorem 2 of Ref. 12, proved in Ref. 14, which says that 
the Jost function is given by the limit 

F(k) = lime f(k,r)/tP(r)] , (30) 
r-o 
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where 

tP(r) = 2 - I12g - 112 r"14 exp(~ r - (P - 2)12). (31) 
p-2 

Employing Eqs. (I5), (25), and (26) this gives the following 
result for the Jost function 

F(k) = (2k)1/2 exp [ _ _ V_B(~,~+ 
p-2 2 2 

I) iv -+-
p 2 

X B (~ ,1 _ ; ) _ i;] 
[

IN 12 -I J /32 I] -I 
X I-i L ~ 

n=O v2n + 1 

[ 
N-I Y 1 

X 1 + n~1 ;; + 1JN(V) , (32) 

where 

(33) 

According to Eq. (21) this error term is bounded by 

I1JN(V) I <.LiN, -I (v, + (0) exp [ ~I r( _ "'.00) (ZIl2Bo(Z»] , 

(34) 

where we can take the variations along the real axis. By using 
the real form of the Olver theorem this bound can be slightly 
tightened, the resulting change being 

4p1>~U, 4P2~2, 4P3~2, 

where 

A = sup [1TlxI I/2M 2(X)] ::::: 1.04. 
xe( - 00.00) 

(35) 

(36) 

M is closely related to, but not identical with ~ (Ref. 15, pp. 
394-7). 

Instead of using Eq. (30), it is also possible to use the 
standard Wronskian definition of the Jost function, since 
bounds are available also for the derivative of the error term. 
After some algebra, the formula obtained that way can be 
reduced to Eq. (32). 

For the phase shift Eq. (32) implies 

[

IN /2 - I J /32n + I ] 
8(k) =8JwKB (k) - arctan ~ -- - 0N(V), 

n"'=O vn + I 
(37) 

where 

v 
8JWKB (k)= - 2 B (P -lIp)+!1T (38) 

is the JWKB phase shift and the error term is given by 

Im1JN(v) 
~M=~~ ~ 

I + l:~,:: Yn/v" + Re1JN(v) 

Equations (29) and (34) imply that 

8N (v)=O(v- N
) asv~oo. (40) 

The main earlier results on the phase shift are the fol
lowing: Bertocchi, Fubini, and Furlans gave Eqs. (37) and 
(38) but without proof of the boundedness of the error term. 
They also determined/3I' 
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PI = p+l B(~,~). 
24p 2 P 

(41) 

Paliov and Rosendort1' got the same value for 0JWKB' but a 
different PI' Calogero7 and labbur8 got different values for 
the coefficient of the leading, linear term. This was, in short, 
the situation in 1969, described by Frank, Land, and Spec
tor4 in their review article. There seem to have been no 
proofs known at that time of the boundedness of the error 
term. However, studying mainly the large I behavior, Tikto
poulos9 indeed gave a proof ofEq. (40) for N = 1 and the 
present author lO a proof of Eq. (29) for general N. Another 
overlooked result is that of Rofe-Beketov and Hristov, who 

in Ref. 12 stated that 

81(v) = 0(1) as V--+oo, (42) 

giving a rigorous proof in Ref. 14. Finally, Froman and 
Thylwe l recently gave a rigorous proof ofEq. (40) for N = 1. 

4. COMPUTATION OF THE HIGHER-ORDER TERMS 

In general, it is a difficult task to determine the higher 
order terms An and Bn from Eq. (14), because they are given 
recursively, and compelxity grows fast with the order. For 
the first few terms, however, numerical methods should 
work quite well for a very large class of potentials, because of 
the regularity of the functions involved. In such a process, 
special care must be taken of the cancellations between the 
two terms ofEq. (S) near s = 1. We shall not here pursue this 
line of approach any further. 

Let us instead take advantage of the specialization to 
the potential (1) to determine an analytic expression for Bo, 

B ( ) _1 ~ 1/2 iZ 

d [5 112 5 [v'(s)F - 4V"(S)V(S)] OZ-2Z z--+z . 
o 16z5/2 16v3(s) 

(43) 

Introduce here a cut along the negative real axis and let Cz 

denote a curve from a negative real z on the upper rim of the 
cut, around the origin to the same z on the lower rim of the 
cut. Then 

Boz = -( -z) dz--( ) i ~ 1121 { 5 
4 e, 16z5/2 

1/2 p(1 - v)1 + 21P [5p - (p - 4)v] } +z , 
16v3 

(44) 

and the integral can be split into two convergent parts,5 

_5_ r !!!... = ~(_Z)~3/2 (45) 
16 Je, Z512 12 

and 

1 1I2d 
L ~ [5p _ (p _ 4)v](l- V)I +2!p 
16 e, v3 

= -h 1 (_dV)512 [5p - (p - 4)v](1 - V)lIp, 
e" v 

respectively, where we used the fact that 

dz = dz ds = _ (_V_)1/2~(1 _ v) ~ I ~ lip, 
dv ds dv -z p 
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(46) 

(47) 

and defined Cv to be the image of Cz in the complex v-plane, 
cut along the positive real axis. Cv goes from a VE(O, 1) on the 
lower rim of the cut, around the origin to the same v on the 
upper rim. 

Now the incomplete beta function (Ref. 17, p. 263) can 
be written 

Bv(a,b) = f ta~l(l_ t)b~1 dt 

= .. 1 (,(-V)a-I(I-V)b- I dV (4S) 
21 sm(1Ta) Je, 

for non integer a, and we have thus obtained 

5 ( - z) - 112 [ (3 1 ) 
Bo(z) = - 4Sr - 32 5pB v - 2,1 + p 

-(P-4)Bv(-T,I+ ~)]. (49) 

Note here that since 

B v(a,b)=a- IvaF(a,l-b;a+l;v), (50) 

where the hypergeometric function is regular at v = 0, there 
is no branch point singularity on the right hand side of Eq. 
(49), just first and second order poles at z = O. Therefore, 
this expression is valid by analytic continuation in the whole 
complex v-plane, corresponding to largsl < 1Tlp. The corre
sponding region in the z-plane contains, in particular, the 
whole real axis which is all we need. 

Note also that there is a complete cancellation between 
the poles on the right hand side of Eq. (49), so that Bo is 
regular at z = 0 as it should be, 

B (z) = (p + 1)(p + 11) + O(z) as z--+O. (51) 
o 140p2/3 

Calculation of the constants ofEq. (27) is eased by not
ing that from the properties of the hypergeometric functions 
(Ref. 17, pp. 556-9) it follows that 

lim Bv(a,b) = B (a,b) for b > 0 
v ... 1 

lim B,,(a,b) 
v ... -- OC; 

= B (a,1 - a - b) exp[a1Tisgn(argv)] for a + b < 1, 

also for negative and noninteger z. 
Equation (49) then implies Eq. (41) and 

YI= p+l B(~,~- ~). 
24p 2 2 p 

We thus obtain the same PI as Bertocchi et al. 
Next, we determine A I by noting that 

which immediately gives us 

AI(z) = -~B6(z)+¥B~(z)+!f3i. 

implying 

Y2 = ~ri + !f3 ~. 
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Determining B I is already much harder, but both this 
coefficient and the higher ones can be expressed in incom
plete beta functions. The calculation of the higher order 
terms can be somewhat simplified with the help of a trick due 
to Olver (Ref. 17, p. 412, ex. 7.4). Even with this method 
however, we have not been able to find a general formula for 
the nth term, due to the growing complexity. 

Our result for B I is 

B I (z) = izB 6 (z) + if3 i Bo(z) - ¥ - 'A ; (z) 

25 +!7- 2B'(z)+ -L7- 3B (z)- __ Z-5 
!r 0 32"" 0 210.3 2 

+ - 25n3B - - 2 + -( z) - 1/2 [ (9 3 ) 
211 r v 2 ' p 

-lOp2(P-4)B.,( - ~ ,2+ ;) 

+P(P-4f B v ( - ~ ,2+ ;)]. (57) 

This expression has poles of first to fifth order in the different 
terms of the right hand side, which cancel completely to give 
a regular B I • We have verified this cancellation by explicit 
calculations, both algebraically for general p and numerical
ly for p = 4. 

For the corresponding constants Eq. (57) implies 

(3 =1(33 + p(p+ 1)(2p-3) B(- 2. 2+~) 
3 3 1 29 .3 2 ' p 

Y 
_ 1_,3 + 1(32y p(p + 1)(2p - 3) 

3-(;(1 2 11- 29.3 (58) 

X B (- 2., ~ - ~). 
2 2 p 

5. OTHER POTENTIALS AND 1=1-0 

As mentioned above, the restriction to the potential (1) 
was technical-for this potential we can determine analyti
cally the coefficients of the series in Eqs. (15), (32), and (37). 
Up to v-\ inclusive, we have shown this e~plicitly. 

For other potentials, real analytic in a sector around the 
positive real axis, and having the potential (1) as a repulsive 
core, 

V(r)~g2r-P, p>2, (59) 
r-->O 

but otherwise quite arbitrary, the method can be applied as 
above. Some complications arise, however. The first is with 
the scaling: the function v(s), and therefore the Liouville 
transformation (5) and the function X(z) in Eqs. (7) and (8) 
will be v-dependent. However, this is allowed in the Olver 
theory. The error term analysis is still applicable, but one has 
to accepe 9 a v-dependence of An' B n , (3 n , and y n . 

The second complication is, as already implied, that the 
integrals involved are in general not expressible in known 
functions. However, as mentioned in Sec. 4, numerical meth
ods could be quite efficient here. 

Accepting the above complications, the theory of Secs. 
2 and 3 should work for a large class of potentials, but of 
course a number of points have to be checked in each case, 
e.g., where the singularities of X (z) are. If the potential has 
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the repulsive core (59) the singularities will in the limit 
V-oo approach those of the potential (I). For v large 
enough, the theory then goes through, and the leading term 

in the phase shift will be the same as in Eqs. (37) and (38). 
To be more precise, assume that 

V(r) =g 2r -p +Ar q
, 1 <q<p> 2, 

and put 

s= IS (l-s-P-fls-q)1I2ds, 
s, 

where 

(60) 

(61) 

{
fl =Ag-2(q-2)/(p-2)V-2(P-q)/(p-2) (62) 

So = 1 + p -Ifl + 0 (fl2), 

So being defined as the turning point close to 1 for large v. 
A series expansion of the integrand ofEq. (61) gives the 

small fl (large v) asymptotic formula 

f;-=-.!..B(~ _-.!..)_1!:...B(J.. q-l) 
~ p"2' p 2p"2'p 

+ o (fl3/2) + o [fl2B.,( _ ~ ,2q;1 )]. (63) 

This implies the following expression for the JWKB phase 
shift. [Note that Eqs. (37) and (40) are still valid, even though 
an extra v-dependence appears in the coefficients of the 
series]: 

0JWKB (k) = - ~ B (-.!.. ,1 - -.!..) 
2 2 P 

_ flv B (-.!.., q -1) + !!... + o (Vfl3/2). 
2p 2 P 4 

(64) 

Thus, adding to the repulsive core a perturbation according 
to Eq. (60) does not change the leading asymptotic behavior, 
but can affect the next to leading term. This is so since for 

q>l+!~ ~~ 

the second term of the right hand side ofEq. (64) dominates 
the constant term. 

Now, if the perturbation of the repulsive core is not as 
strong as implied by Eq. (65), but only 

AV(r) = V(r)-g2r-p 

= {o(r- Q
) as r-o, q< 1 + Y' (66) 

O(r- I -,) as r-oo, E>O, 

then our method can be applied in another, simpler way. 
This is because under these conditions, we can keep the 
transformation (5) and still have everything finite and well 
defined. The difference is simply that in Eq. (7) and there
after, X should be replaced by X, where 

AX (z) = X(z) - X(z) = - [roz/v(s)]..::1 V (roS) (67) 

[compare Eq. (3.06) on page 398 of Ref. 15]. In particular, 
we obtain 

..::1B (z)= _1";'Z-1i2 --A V (roS) i
z ZI/2dz 

o :1 0 0 v(s) , (68) 

which is convergent for all z under the conditions ofEq. (66). 
Assuming again the potential (60), we get 
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( _ Z)I/2.1Bo(z) = ~ Bv( ~ , q; 1 ) , (69) 

where 

(7 = A. (v/g?(q -2)/(p -2) (70) 

is a large or small parameter for large v, depending on 
whether q is > 2 or < 2. The corresponding changes in fl, 
and Y2 are 

{

.1fll = ~ B (~ , q; 1 ), 

(71) 
(7 (1 1 q-l) 

.1YI= 2pB "2'"2- -p-, 

which for the phase shift implies 

~ (k ) = - ; B (~ ,1 - ~) + : - ~Z~ B ( +, ~) 
- ~ B (~, q - 1 ) + 0 (~) + 0 (~), (72) 

2pv 2 P v v 
in accordance with Eqs. (37), (41), and (64). 

At this point we are also in a position to test the so
called Langer prescription (see, e.g., Ref. 4) usually de
scribed as the replacement 1 (I + 1)-.(1 + !)2. For 1 = 0 and 
the potential (1) this corresponds in our method to using 

Is ( 1 )112 5= l-s-P- --2 ds 
s, 4vs 

(73) 

instead ofEq. (5), where So is the turning point close to 1 for 
large v. At the same time we compensate for the extra term 
by putting 

(74) 

so that the total differential equation is the same. Now, from 
Eq. (64) we see that Eq. (73) implies the change 

.1~JWKB(k) = - s~v B (+, ~) + 0 (~). (75) 

1.5 n---------"'-------, 

1 

. 5 

o 2 5 10 15 P 

FIG. I. The variation withp of the coefficients.8, and r, of the IIv-terms in 
Eq. (32), representing the second-order JWKB contribution. 
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.3 

.2 

.1 

o 

- 05 , 2 5 10 15 p 

FIG. 2. The variation withp of the coefficients r2'.8, and h in Eq. (32), 
representing the third- and fourth-order JWKB contribution. 

which in the total phase shift is compensated by the term 

_ .1fl, = _1 B(~,~) + O(~) 
v Spv 2 P v (76) 

according to Eqs. (6S) and (71). We conclude that the 
Langer prescription takes care of part of the second order 
JWKB contribution already in the first order term, so that 
the remaining second order term is 

_ iJl = _ P - 2 B (~ , ~) + 0 (~) , (77) 
v 24pv 2 P v 

which is smaller than the old second order term for all p, and 
zero for p = 2. 

From Eq. (72) we can also get an expression for the I> 0 
phase shift 

~l(k)= - ; B(+,l- ~)+ ; (/+ +) 
P_2~!~~+1)2 B(+, ~)+o(~). 

(7S) 

6. SOME NUMERICAL RESULTS 

To illustrate the accuracy of the method, we shall final
ly give some numerical results . 

The variation of the first few coefficients of the asymp
totic series with the power p of the potential is given in Fig. 1 
for fl, and YI and in Fig. 2 for Y2' fl3' and Y3' 

Note the non uniformity inp of the approximations, il
lustrated by the behaviorofYN asp--+2 andflN' YN asp--+oo. 
Note also thatiJ, and r" replacingfl, and Y. if we follow the 
Langer prescription, are obtained from the latter by multi
plication with (p - 2)/(p + 1), among others implying that 
iJ.(p = 2) = 0 and rl(p = 2) = 1/12. 
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1 

. 1 

.01 

.001~------~--------------~ 
1 10 100 

JI 

FIG. 3. The variation with v for fixedp = 4 of the error estimate Eq. (34) of 
the first- and third-order JWKB approximation, respectively. 

Even though the size of fl Nand r N already gives us 
some hints about the accuracy, we would like to be more 
precise. The expressions of Eqs. (22) and (34) are here avail
able. They contain the total variations of, in particular, 
zt /2 Bo(z) and ZI/2 B I(Z), If those functions were monotonic, 
we would have, e.g., 

{
'Y( _ =.0) [ZI/2Bo(z)] = fll' 
'Y(o.=) [z1J2Bo<z)] = rl' (79) 

However, we have not been able to prove this for general p
only checked numerically that it is true for p = 4. 

Also for p = 4, we have examined numerically 
Izl t

/
2B I (z) and found that it has a minimum = - 0.02063 at 

z= - 3.9 and a maximum =0.00157 at z= - 1.06, but is 
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otherwise monotonic and approaches {33 = - 0.02051 at 
Z = - 00, so that 

{
'Y( _ =.0) [ZI/2B I(z)] = 0.0239> Ifl31 
'Y(o.oo) [ZI/2B I(z)] = r3' (80) 

The resulting bounds for Jlt(v) and Jl3(V) are given in 
Fig. 3 . 
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A multipole expansion scheme is introduced for a wide class of stationary, asymptotically flat, 
vacuum solutions of Einstein's equations using the conformal techniques of Geroch and Hansen. 
An intrinsic choice of the conformal factor and suitable asymptotic flatness conditions enable one 
to express the rescaled gravitational mass and angular momentum potentials and the rescaled 
spatial metric as power series in normal coordinates around a point A representing the spatial 
infinity on the conformal manifold. The coefficients of this expansion are certain nonlinear 
combinations of the Hansen multi pole moments. As an example the Schwarzschild metric is 
discussed in the present framework. 

P ACS numbers: 04.20 - q 

I. INTRODUCTION 

Although a number of exact solutions of the Einstein 
equations are now known, their interpretation has almost 
always been a rather difficult problem. For obtaining a com
plete intuitive picture of a solution it is important to relate 
the parameters appearing in the metric written in a certain 
coordinate system to the physical characteristics of the 
source. In general relativity quite often a particular coordi
nate system chosen for the purpose of simplifying the alge
braic form of the metric tends to obscure its physical con
tent. Thus, for gaining insight into the physical significance 
of an exact solution, a manifestly coordinate-free method of 
treatment is called for. In the context of Newtonian gravita
tion, the multi pole moments provide one such approach. 
Apart from their usual interpretation as the coefficients of 
the multi pole expansion and the successive moments of the 
source density, the multi pole moments can be identified with 
a set of trace-free symmetric tensors at spatial infinity which 
is represented as a single ideal point attached to a three
dimensional manifold with a smooth conformally flat posi
tive definite metric. 

From the analogy with the Newtonian case, Hansen, I 
generalizing an earlier work of Geroch, 2 formulated the defi
nition of the multi pole moments of a stationary vacuum met
ric in a generally covariant manner. His method of construc
tion of these moments may be briefly described as follows. 
The set of all orbits of the timelike Killing vector field consti
tutes a three-dimensional manifold which is equipped with 
an induced positive definite "transverse" metric. An addi
tional point A is attached to this manifold to represent the 
spatial infinity. A suitable notion of asymptotic flatness is 
then introduced in order to represent the gravitational field 
of an isolated system. This is done by requiring the existence 
of an appropriate conformal factor such that the rescaled 

"'Work supported by the U. S. Department of Energy. A brief preliminary 
version of this work has previously been circulated as University of Roch
ester Report No. UR-738 (unpublished). 

hlp resent address: The Enrico Fermi Institute, University of Chicago, Chi
cago, Illinois 60637. 

metric is C = everywhere (including at A ). This allows one to 
analyze the asymptotic structure of any field on this confor
mal manifold in terms of its local behavior near A. In par
ticular, the norm and the twist of the timelike Killing vector 
define the two gravitational scalar potentials <PM and <P J of 
conformal weight - 1/2 on this manifold. The vacuum field 
equations imply that the two rescaled potentials are also C 00 

near A. The Hansen multi pole moments are then defined 
recursively as the values at A of a sequence of traceless sym
metric tensors constructed from the rescaled metric and the 
rescaled gravitational potentials. 

However, an important question remains to be settled. 
In the case of Newtonian gravity every solution of Laplace's 
equation vanishing at infinity can be expressed in terms of 
the multipole moments via the multipole expansion. Thus 
the Newtonian potential is uniquely specified by its multi
pole moments about a chosen origin. One might ask whether 
this is true also in general relativity, that is to say, whether a 
given set of multi pole moments uniquely determines the 
structure of a stationary asymptotically flat vacuum solution 
of the Einstein equations at least near spatial infinity. The 
purpose of this paper is to express the two rescaled gravita
tional potentials and the rescaled spatial metric tensor as 
power series around A whose coefficients are certain nonlin
ear combinations of the Hansen multipole moments. This is 
accomplished by slightly strengthening the usual asymptotic 
flatness condition. The main idea is to exploit further the 
analogy with the Newtonian theory and select a conformal 
factor in an intrinsic way that is applicable to a large class of 
stationary empty spacetimes. It is hoped that the present 
work goes a considerable way towards establishing the yet 
unproven uniqueness theorem and increases our under
standing of the asymptotic structure of the gravitational 
field of a spatially bounded time-independent source. 

II. DEFINITION OF THE MUL TIPOLE MOMENTS 

In this section we give the formal definition ofthe multi
pole moments ofa stationary, vacuum solution of Einstein's 
equations asymptotically flat at spatial infinity. 

Throughout this paper the greek spacetime indices,u,v, 
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... take the values 0, 1, 2, 3. The components of a spatial 
tensor are labelled by the indices i,j,k, ... in a general coordi
nate system and by a,b, ... ,h in a normal coordinate system; 
they run through 1,2, 3. The capital latin indices A, B, ... 
= M, J. All repeated indices are summed. The (square) 

round brackets are used for total (anti-) symmetrization of 
the tensor indices. 

Let us consider a spacetime (1, gil>') with a one-param 
eter timelike group of motions :5 satisfying the vacuum field 
equationsR llv = 0. The normA = SIlSIl and the twistw (giv
en by "if Il W = e IlvpA v"ifP S '1 of the associated Killing vector 
Sil define two scalar fields 

(1 ) 

4>; = yt -IW, (2) 

on the three-dimensional manifold Y of its trajectories. The 
canonical projection 1T: 1-+Y = 1/:5 induces a positive 
definite metric hij on the quotient space Y given by 
hij = - A (1T.g)ij' On the manifold (Y, hij) the equations 
R llv = 0 reduce to 1,3 

(h ij"if; "ifj - 2R )4>A = 0, (3) 

Rij = 2 ("if;4>A"ifj 4>A -(1 + 44>2)-IV;4>2"ifj4>Z], (4) 

where Rij is the Ricci tensor of r, R = h ijR u and 
4>z = 4>A4>A' 

In order to describe the external field of a spatially 
bounded source distribution, one usually requires (Y, hij) to 
be asymptotically flat in the sense of the following definition. 

Definition 1: A manifold (Y, hij 1 is said to beasymptoti
cally flat, if there exists a C = manifold (lY, hij) satisfying the 
conditions 

(i) r = ~"u A where A is a single point; 
(ii) h;j is a C 00 positive definite metric on r, such that, 

(a) h;j = [} 2hij on '1/', where [} is a scalar field (at least C Z) on 
r and (b) [n L1 = 0, [[};; 1" = 0, [.g;ij - 2;;;j]A = 0, where 
semicolon represents the action of "if i> the covariant deriva
tive on (r, h;j)' The point A thus attached to Y represents 
the spatial infinity. In terms of the rescaled potentials 

cPA = il -I/Z4>A (5) 

the field equations on the conformal manifold (¥~, h;j) are 

(X - 2R)cP = Wl-I[X[)- w -Ihij[}[} .JcP . 
A 2 2 ;1 ;} A, 

X = hUV; Vi' (6) 

Ri} = - [} -I [n;ij + h;j(Xn - 2[} -IP'n;kil;l) 
-z - - -z 

-!4> [};;[};i] + 2 [[}4> A;; 4> A;j + ~[}; (i 4> ;J) 

- (1 + 4ilcP Z)-I([}cP Z);;([}cP ZL] , (7) 

where we have set R = hURij and cP 2 = cPA cPA' Using Eq. 
(7), Eq. (6) can be rewritten as 

(8) 

whereX\c) = X -!R is theconformallyinvariantLaplacian 
onr. 

Next we quote two theorems due to Morrey4,5 on the 
differentiability properties of the solutions of a system of 
second order (nonlinear) elliptic differential equations which 
will be needed in the sequel. Let us consider a system 

(9) 
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on N coupled second order nonlinear differential equations 

for N functions u/3 (x) which is elliptic on an open neighbor
hood !iJ 0' i.e., at every point XE!iJ {) 

(10) 

v b = (b; lE5"-~, the cotangent space at x (b =I 0), where 

(11 ) 

and comma denotes ordinary derivative at x. 
Theorem 1 (Morrey4): If the functions u/3 (x) are of class 

C Z and satisfy Eqs. (9) and (10) on a bounded domain .01 () 
::J § I (the closure of!iJ I) and Fa are of class C Ion the set 
c:V, the closure of a domain A/' which contains the compact 
set {x, u/3 (xl, u/3.k (x), u/3.k,(x)lxE§ II. then u/3 (x) are of class 
C 2 

+1', i.e., Uf3.k' (x) are uniformly Holder continuous with 
exponent J.L (0 <J.L < 1) on any domain g; 2 such that 
Ji;zC£iJ I' 

If, moreover,Fa are of class em +1', i.e. themth deriva
tives of Fa are uniformly Holder continuous with exponent 
J.L on .;t~ (m = integer> 1,0 <J.L < 1), then uf3 (x) are of class 
em + 2 + Il on !iJ I' 

Corollary: If the solutions u/3 (x) ofEqs. (9) and (10) are of 
class C 2 on!dJ {) ::::> Ji; I and Fa are of class C 00 with respect to 
all the arguments on ,.::y', then u/3 (x) are also C 00 on /:;iJ I' 

Theorem 2 (Morrey5): If the solutions uf3 (xl of Eqs. (9) 
and (10) are of class C 2 on a domain !dJ 0::::> 9 I and Fa are of 
class C'O (i.e., analytic) with respect to all the arguments on 
J:V, then uf3 (x) are also of class C '0 on !iJ I' 

Theorem 1 was used by Hansen \ to infer the smooth
ness property of the fields cPA in the neighborhood of A. A 
precise statement of his result is contained in the following 
lemma. 

Lemma 1: If 
(1) (')/", hij) is asymptotically flat (in the sense of Defini

tion 1), 
(2) h~ and cPA satisfy the vacuum Einstein equations, 

viz. Eqs. (6) and (7) on an open domain /j) () C i/" containing 
A, 

(3) the quantities cPA' if (=[) -\12K ) given by 

-4 I) -2h-ij[' '+ J K = V" /l, ./l,. w ·w . .... ,i.J ,i.J (12) 

and 

( 13) 

are of class C 2 on an open domain !i) I containing A, with Ji; I 

C !i)o' and 
(4) [cPM];I =10 (i.e. the mass of the system is nonzero), 

then cPA' K, Iii are of class C '" on an open domain if) 2 con
taining A, such that g 2 C !i) \. 

Proof The lemma is easily proved using the corollary of 
Theorem 1, by observing that cPA' K, and Iii satisfy a coupled 
system of (conformally invariant) second order differential 
equations which is elliptic on an open domain iiJ 0 C iff'", if 
(<PM] A :f: 0: 

(X (e) - JiK4)cP = ° 8 A , (14) 
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/(7(£ Ic) _ 3.;(4);( + jj. jj ijk 
8 Ijk 

+F($B,$B;m,$B;mn';('~m' If, iji;m' If;mn) =0, 

[($2)2(£ _ 61(4) - 2$2$A$A;;V; (15) 

+ 2(iji2 - l)hijEAB $A $B;;EcD$c$D;j]iji = 0, (16) 

whe!e jj;jk _= !:;Ij;k J is the Bach tensor of ('1', hij), Lij 
= Rij - ~hijR and F is a (rather complicated) conform ally 

invariant function of weight - 6, whose explicit form is giv
en in Ref. 1 and will not be needed here, In Eq, (16) EAB 
denotes the Levi-Civita symbol: 

( 0 01) . IIEABII = _ 1 
The physical significance of the conditions (3) in 

Lemma 1 are clarified in the following two lemmas. 
Lemma 2: If $A and n are of class em in the neighbor

hood of A, then iji is also of class em there. 
Proof The lemma follows from the obvious relation 

iji 2 = 1 + 4fl$ 2 (17) 

by noting that iji #0 near A. 

Lemma 3: If $A' nand 

w=fl-'hunn· (18) 
,I ,j 

are of class C 2 on a domain !iJ ° containing the point A, then;( 
is of class C 2 on an open domain !iJ 1 containing A such that 
g; 1 C."dJ 0' provided [$M ]A #0. 

Proof Contracting Eq. (7) and rearranging, we obtain a 
second order differential equation for the conformal factor 
n: 

iji2[4(£n-iw)+nR] _(!$2w +G)n=0, (19) 

which is elliptic on !iJ 0' where 
-r -2 - - -2 2 -2 -2 ] G = h 1[2nlfl cJ>A;;cJ>A;j + n;;cJ>;j - 2n cJ> ;;cJ>;j .(20) 

From Eqs. (6) and (19) we also obtain a pair of second order 
elliptic differential equations for $ A on !iJ 0: 

[iji 2£IC
I - .!f(!$ 2W + G)] $A = O. (21) 

We now consider open sets !iJ;, !iJ b, and !iJ 1 containing A 

such that 

Y o:J!t5;:J!iJ;:J!iJb :J·@b:JfZ),:J!iJ ,· 

From the assumptions it follows that (!$ 2W + G) is of class 
Cion y; 0:J g; O. The first part of Theorem 1 applied to Eqs. 
(19) and (21) implies thatn, $A are C 2 

+f.L on g) b (0 <11 < 1). 
Consequently (~$ 2 W + G) is of class C 1 + I' on § b. A further 
application of Theorem 1 to Eqs. (19) and (21) then shows 
that fl, $A are C 3 +" on 9 1, The relation 

;(4 = iji -2(~$2W + G) (22) 

then implies that ;(4 is C 2 on !iJ ,. Since ;(#0 on .(i; I' the 
lemma follows. fNote that [wL = 4 from Eq. (19).] 

Finally, eliminating w in favor of;( and iji in Eq. (19), we 
get an elliptic equation for fl whose coefficients are C 00 on 
!iJ 2 by virtue of Lemma 1: 

(4£ + R - ;(4)n - 12($2)-'(iji2;(4 - G) = O. (23) 

Therefore by the corollary to the Theorem 1, it follows that 
n and consequently, on account of(22), w as well are of class 
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Coo on an open set !iJ such that !iJ 2:J ,?ZJ. Thus we arrive at 
Theorem 3: If 
(1) (7/', hi)) is asymptotically flat (in the sense of Defini

tion 1), 
(2) hi) and $A satisfy the vacuum Einstein equations, 

viz. Eqs. (6) and (7) on an open domain ."dJ 0 C r- containing 
A, 

(3) the quantities $A ,n and wareofclass C 2 on g; 0' and 
(4) [$M ]A #0, 

then there exists an open set !j) containing the point A, such 
that ,fd; C ,(j) ° and $A' nand ware of class Coo on 9;. 

The multi pole moments QA
i 

.. ;. are recursively defined 
as a set of trace-free symmetric tensors at A by the relations 

QA · . = [PAc .] , 
1" .. 1, 1" .. 1, A 

PA·· = 'C [PAl· .. 1" .. 1, I J /, ••. 1,;1, I ,J 

- !s(2s - l)PAIi,;, ,R;J, , ,I]' (24) 

where '(/ [ ... J represents the trace-free part of a tensor. 
The analogy of the present scheme with the multipole 

expansion for Newtonian gravity is quite clear. In the latter 
case the field equations are simply Ru = 0 and.1 cJ> = 0 or 
equivalently .1 lc1 cJ> = O. The rescaled potential $ = n - 1 f2cJ> 
is a smooth scalar field on j> which satisfies the equation 
£Ic)$ = O. The multipole moments Q;, .. ;, are determined 
from $ by relations analogous to (24). In this case we can 
explicitly construct the conformal manifold r:~ by trans
forming the standard Cartesian coordinates x a to a new set 
ya = r- 2x a with r2 = Dabxaxb, attaching the point 
A = Iya = 0 l to the original manifold '}/' and rescaling the 
original flat metric dl 2 = oabdxadxb to dP = fl02 dl 2 

= Dahdyadyh, no = r-2. Theconformalfactorflo can also be 
interpreted as the square of the Euclidean distance from the 
point A: no = S2 = 0 abyayb and characterized by the 
relations 

hunO;;nO;j = 4flo' (25) 

flO;;j = 2h,j' (26) 

everywhere on 'P. Since r' is also flat (Ru = 0), $ satisfies 
£$ = O. The multipole moments are given by 

Q . . = [$ .] 
1, ... 1, ;1, ... 1, A 

and are automatically totally symmetric and trace-free. The 
freedom of choice of the conformal factor in fact includes the 
usual freedom of choice of the origin of expansion in 7·. It is 
easily seen that a translation of origin xa--*x,a = x a + YJa is 
equivalent to a rescaling 

fl () = flo(1 + 20ab yaYJb + flofJ ab YJaYJb)-I, 

where both no and n b satisfy Eqs. (25) and (26). The general 
definition of the multipole moments is so chosen that their 
transformation property under an infinitesimal conformal 
mapping precisely reproduces their behavior under an infini
tesimal shift of origin. The standard Cartesian multi pole ex
pansion of cJ> is simply the Taylor expansion of the rescaled 
potential $ around A: 

$ = Q + Q"ya + !Qahyayb + ." . 
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In the next section we will introduce a similar expansion for 
the gravitational field of a spatially bounded stationary 
source in the framework of general relativity. 

III. THE MUL TIPOLE EXPANSION 

We have already seen that for any given stationary 
vacuum solution of Einstein's equations satisfying the condi
tions of Theorem 3, there exists a set of well-defined muIti
pole moments. However the asymptotic conditions de
scribed in the last section appear to be too weak to allow 
power series expansion of the quantities (j)A and ii;j around 
A. In order to have the possibility of such an expansion (at 
least formally), one is led to impose a somewhat stronger 
boundary condition at spatial infinity. First we note that in 
the C 00 manifold (r, ii;j) there exists a unique maximal geo
desic y x : [0,1]----. r for a nonzero vector X in :T A (r) such 
that [Ref. 6, p. 30] 

d 
Yx(o) =A, dt yx(t)I,~o =x. 

Obviously, Y,x(u) = yx(tu). Analogy with the Newtonian 
case suggests the quantity 0' representing the square of the 
geodesic distance from A in (r, hij) as an appropriate intrin
sic conformal factor. The function 0' satisfies the equation 

O'id = 40' (27) 

and the boundary conditions 

[u]A =0, [O'i]A =0, [O';ij]A =2[~]A' (28) 

where we have set O'i = O" i = ViO' and the indices i,j, k, ... are 
raised and lowered by ii;j'. This special conformal factor 
therefore trivially satisfies the conditions of Theorem 3. We 
are thus led to replace the usual asymptotic flatness condi
tion by a more restrictive criterion which will be referred to 
as the "strong asymptotic flatness condition." 

Definition 2: The manifold pv, hij) is said to be strongly 
asymptotically flat if there exists a C W (i.e., analytic) mani
fold ('p, ii;j) with the following properties: 

(i) 'Y' = Yu A where A is a single point, and 
_ (ii) hij is a C'" positive definite metric on r such that, 
hij = c?hij on Y, where 0' = S2 is the square of the geodesic 
distance from A in ('Y', ii;j)' 

This special conformal factor f1 = 0' has the remark
able property of preserving (local) geodesic correspondence 
between the manifolds( Y, hij) and (r, ii;j)' i.e. 

(~:i)V{ ~~) = ~( ~:i)Vi( ~:) = 0, 

with r = 1/s. 
The field equations on rare 

[XIC) - 15(W;' + (j)2)](j)A = 0, 

Lij = -O'-I[O';ij -2ii;j _!(j)2O'iO'j ] +2Wij' 

with 

(29) 

(30) 

W -2 - k k ij = O'Aij + O'li BJ1 - Ol> O'iO'j - Ahij(O'Ak + O'kB + C), 

A ij = !(j)A;i(j)A;j - u(1 + 4O'(j)2)-1(j)2;i(j)2;j' 

Bi = !(j)\(1 + 4O'(j)2)-I, 

C=(j)2(1+4u(j)2)-I. (31) 
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Since (Y, hij) is assumed to obey the strong asymptotic fl~t
ness condition, Eq. (29) is a pair of elliptic equations for CPA 
with analytic coefficients. From Theorem 2 it follows that 
the fields (j)A are also analytic in an open neighborhood of A 
in r. 

Since the manifold r is C 00 and possesses an affine 
connection, there exist, in accordance with standard theo
rems of differential geometry [Ref. 6, pp. 32-34], open neigh
borhoods JY'o C:T A (r) and c!V'A C r such that the expo
nential map eXPA: X ----.y x (I) is a C 00 diffeomorphism of c!V'o 
onto,A/ A • If ffo is chosen to be star-shaped around the 
origin (i.e. tXE./Yo for allXsA/o and 0.;;;1.;;;1), thenffA 
= exp A ff 0 is a normal neighborhood of A. Moreover ff A 

is also a normal neighborhood of each of its points (White
head's theorem). In particular, LY'A is convex, i.e., two arbi
trary points of uYA can be joined by exactly one geodesic 
segment contained in '/YA (except for a linear change of the 
affine parameter on the geodesic). Next let (ea J denote an 
orthonormal basis in:T A . The inverse mapping OLffA into 
R3 given by 

eXPA -I(X) = yaea , XS/Y'A 

defines a normal coordinate system around A in 'Y'. More
over, in the present case eXPA is an analytic diffeomorphism 
since r itself is analytic. The pair (A"' A ,exPA ) thus repre
sents an analytic chart in r. This enables us to expand 
(j)A = 0'-1 /2cp A and h"b = c?hab as power series inya around 

A (~ denotes an equality valid only in normal 

coordinates)7: 

(j)A ~ f (n!)-I [(j)A;la,an,]Aya'oo.yan, 
n=O 

h ~ 8 + 1 [R ] ya'ya, + 1 [R ] ya, a'ya. 
ab - ab J aa,Gzb A () aa,a.zb;a., A Y 

(32) 

(These expansions follow from the coordinate condition 
r \c (y)ybyc = 0.) Furthermore, we note that the Riemann 
and Ricci tensors of r are related through the equation 

Rikj/ = 4h;iIUL/lkl' (34) 

(Since r is three-dimensional its Weyl tensor is identically 
zero.) 

A straightforward application of the field equations to 
evaluate the coefficients of these expansions in terms of 
QAi.,i, is prevented by the apparent singularity of the right
hand sideofEq. (30) atA. This singularity can be removed as 
follows. By repeated covariant differentiation ofEq. (27) one 
obtains the coincidence limits8 

(35) 

and so on. These then yield the following covariant expan
sion of O';ij 9: 

- 1 () 1 1 
O'."ii = 2h .. - -0.. + -0.. 

, u 3! 'J 2-4! U 

__ I_(U .. + .i.iJ.kU.k) + ... 
22.5! u 3' J ' 

(36) 

where for brevity we have set 
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p -

Uij = Rjkj/:m, ... m/,J<a'cT"' ... ump. (37) 
Next we introduce the auxiliary quantities 

o p 

Aij = Lij' Aij = LJj:m, ... mpcT"' ... u
mp 

(p;;d), (38) 

p P 

Vi = Ai;u j
, (39) 

and collect a number of useful results in the form of several 
lemmas. 

p p 

Lemma 4: For all integers p.>O the tensors U Jj,A if and 
p 

V j obey the recurrence relations 

p+ I P P 

U ij = U if:kuk - 2(P + 2)U Jj' (40) 

p+ I p p 

A if =A jj:k~ - 2pA ij' (41) 

p+! p p 

Vj = Vj:k~ - 2(P + l)Vj. (42) 

Proof The proof involves a simple direct computation 
using the relation 

(43) 
p 

Lemma 5: The vectors V j can be expressed in the form 
p p p 

V j =uG j +ujH, 
where 
o 

(44) 

G j = 2 [(A,kuk - !Ak kUj ) + 2Bj - u/j)2(~Bk + 3C)], (45) 
o 

H = !(3cP 2 + ~cP 2:k uk), (46) 

p + I p p 

Gj = Gj:k~ - 2(P - l)Gj (p.>0), (47) 

p+1 P P 

H =Hk~- 2pH (p.>O). (48) 
p 

In particular the scalars H have the form 
p - -

H =! [(p + 3)</> 2:m,.mp + ~</> 2:jm,.mpd]cT", ... a'nr. (49) 

Proof The case p = 0 of Eq. (44) is proved by contract
ing Eq. (30) with u j and using Eqs. (27) and (43). The proof of 
Eq. (44) for a general value of p can then be carried out by 
induction from Eq. (42). 

p p p 

Lemma 6: U ij = 4uM ij - 2u;Uj H, (SO) 

where 

p p - p p p 

M Jj =A ij + hij(H +!G k~) - ~u(iGj)' (51) 

Proof This lemma is a simple consequence of Eqs. (34) 
and (44). 

From Lemma 6 we can also derive 
Lemma 7: 

U-IU(ik~)k = 16(UM/M;)k - ojU/1 H). (52) 

Arnied with these lemmas we now proceed to examine 
the singularity of the field equation (30) around A. With the 
aid of the expansion (36) and the Lemmas 6 and 7, Eq. (30) 
can be rewritten as 
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( 

0 I 2 \ 

=u-1UjUj !cP 2 - j H + iAn - zloH + .. ) (53) 

where all the singular terms direction dependent at A are 
isolated on the right-hand side. We also note that because of 
Lemma 7, the terms involving products of the Riemann ten
sor and its various derivatives do not contribute to the singu
larity; the only contribution comes from the terms linear in 
the Riemann tensor and its derivatives. However, in view of 
Eq. (49) it is obvious that all the singular terms in Eq. (53) 
proportional to 0'-1 UjUj exactly cancel reducing the equa
tion to the form 

(54) 

Equation (54) now involves only quantities manifestly 
smooth at A. However the price we have to pay is that it has 
now an infinite number of terms. 

From now on the calculations proceed in a straightfor
ward iterative manner. From Eq. (54) and its successive co
variant derivatives at A and the basic coincidence limits 
[Eqs. (28) and (35)] one obtains 

[Lab ],1 ~ ~ Q 28ab ; Q2 = QAQA' 

+ ~ QA(a8b){cQAd) +8abfQAQAcd + ¥QAcQAd 

+Ocd(2Q4 - i QAeQAe)J +40(al(cOd)lb) 

(55a) 

(55b) 

X(Q4+jQAeQA e
) (55c) 

and so on. Eq. (29) and its successive covariant derivatives 
evaluated at A together with Eqs. (55a), (55b), (55c) etc. then 
determine the quantities [<PA:a,a, ],1' [cPA:(a,a,a,)],1, 
[<PA:1a,U,) ],1' etc. in terms of the multipole moments QAa,a. 
from the definition (24). Moreover, it is apparent that in the 
present scheme 

c{; [L(ij:m,.m,,) L = O. (56) 

This is most easily seen by dimensional arguments. Assign
ing the 2' moment QAj,.i, a mass dimension s + 1 we see that 
the tensor [LIiJ:m, ... mJ ],1 of rank s + 2 has also mass dimen
sion s + 2. Since the only tensor available at A besides QAi,.i, 

is h;j' [Lw:m,.m,I],1 must be of the form [h;ij T m, .. m,) Land 
must consequently be trace-free. (In fact the same argument 
applies to the unsymmetrized tensor itself.) Thus the multi
pole moments are given by the simpler formula 
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QAi, .. i, = C(j [cPA;li, .. iJ L· (57) 

Combining these results, one obtains the desired multipole expansion (up to fourth order)lo: 

cPA ~ QA + QAaf' + (!QAa,a, + 06a,a, Q 2QA lYa'ya, + [~QAa,a,a, + 0la,a, (QAa" Q 2 

+ 2QBa" QB QA ) ]ya'ya'ya, + (~QAa,a,a,a, + O(o,a, WBa,a" QB QA 

+ ~QAa,a" Q 2 + iI( l1QBa, QBa" QA + 20 QAa, QBa" QB) 

+ Oa,a"[iI(QBbQBbQA - 2QAhQB bQB) + Q4QA ]})ya, ... ya, + O(y5), (58) 

hab ~ Dab + [Q 2 + iQA QA,ya, + !(QA QAa,a, 

+ QAa, QAa,l(ya'ya, - taoa,a,)] (YaYb - O"Oab) 

together with 0" ~ Dabyayb. It is to be emphasized that the 
expansions (58) and (59) can, in principle, be extended to any 
desired order. However, the computations become increas
ingly tedious in higher orders. One may still hope to find a 
closed form for the general term of these expansions induc
tively by extending the calculation to several higher orders. 

IV. SOME SIMPLE EXAMPLES 

In order to express a given stationary vacuum metric in 
our representation, first one has to solve Eq. (27), which is 
equivalent to an eikonal equation 

h ijR.,R. J = 1 (60) 

on the compactified (but singular) manifold (P', hi)) for the 
function R = 0"-

112. This is readily done in the cases (e.g. the 
Kerr metric) where it is separable in some coordinate system. 
For the Schwarzschild metric the problem is further simpli
fied by the spherical symmetry. In this case it is natural to 
choose ('P', hij) also to be spherically symmetric. Spherical 
symmetry together with static nature implies that all the 
moments except QM are zero. In terms of a new radial vari
able p defined from the standard Schwarzschild radial co
ordinate r by r = p -.I( 1 + !mp)2, the spatial metric has the 
form 

where dlo
2 is the flat metric in spherical polar coordinates 

(p, e, <p ). In this case an appropriate solution of Eq. (60) is 
R = P -1(1 + im2p2) = r - m. Then the conformal metric 
and the rescaled gravitational potentials are given by 

dP = 4 p dl 2 

[ 

1 _ 1m
2 

2 ] 2 

.,.., 0' 
(1 + !m-p 2)-

(61 ) 

<PM = - m "7' <PJ = 0, 
_ [ I + !m2p2] 2 _ 

1 - !m-p-
(62) 

with the point !p = 01 identified as A. In terms of 0", (j) M 
takes the simple form 

(j)M = - mIl - m 20")-I. (63) 

This is seen to agree with the general expression (58) (up to 
fourth order) with the identification QM = - m when all 
other moments are set equal to zero. It is to be noted that the 
series expansion of (63) converges in the entire exterior re-
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(59) 

gion r> 2m outside the event horizon. 
Next let us choose QM = - m,QJ = - I. Since the 

conformal metric hab (and consequently 0") are functions of 
Q 2 alone, they can be obtained by the formal substitution 
m 2 _->m 2 + 12 in the corresponding expressions for the 
Schwarzchild solution. The rescaled scalar potentials cP ~ 
for this new solution are now given by 

(j)~+icP;= -(m+il)[I-(m2+/2)0"]-I. 

We note that the potentials <P ~ ( = 0"
1/2cP ~ ) are related to 

those of the Schwarzschild solution by the relation 

<P ~ + i<P; = eifL(<PM + i<PJ ), a = tan-iII 1m). 

This solution is therefore readily identified as the NUT 
(Newman-Unti-Tamburino) metric. 

V. DISCUSSIONS 
Although in Sec. III we have completed the basic for

mulation of the problem, enormous calculational complex
ities have prevented us from displaying a closed formula for 
the general term of the multi pole expansion. Beyond the 
o (y4) term, the computation involves manipulating increas
ingly long and unwieldy expressions. However certain gen
eral features already begin to emerge in the lowest order 
terms. They exhibit clearly the effect of mixing of the multi
pole moments due to curvature and nonlinearity. The coeffi
cient of the 0 (y') term involves, besides the 2' order moment, 
"trace parts" depending on all moments up to order 2' - 2. 

Thus the local structure of the external field of a bounded 
stationary source described by a strongly asymptotically flat 
vacuum metric, like that of its Newtonian analog, is deter
mined completely by its multipole moments at least near 
spatial infinity. In spite of the rather complicated form of the 
general expansions, the simplicity of the Schwarzschild solu
tion is somewhat encouraging. Relatively simple expressions 
are expected also for the Kerr and the Weyl metrics. It would 
also be of great interest to know whether there are exact 
stationary vacuum solutions which are asymptotically flat 
by the usual criterion but do not obey our stronger condition. 

The present expansion scheme is valid only in a neigh
borhood of A where geodesics emerging from A do not cross 
one another. Knowledge of the general structure of the ex
pansion is necessary to put bounds on the rate of growth of 

P.Kundu 1241 



                                                                                                                                    

the 2S 
- moment with s in order to ensure its convergence in a 

domain of nonzero radius around A. For the Schwarzschild 
metric the expansion is indeed valid everywhere outside the 
event horizon. 

Finally we remark that all the weaknesses of a power 
series method are, of course, inherent in the present scheme. 
The expansion as such does not yield any information about 
the global properties of the solution, for instance, the loca
tion of singularities and other pathologies. It should also be 
mentioned that the problem of relating the multipole mo
ments to the actual source distribution by integral relations 
analogous to the Newtonian case remains completely un
solved in this line of approach. 

Note added in proof Recently a full analyticity theorem 
has been proved for the entire set of rescaled field variables 
(j)A and Fij for a special choice of the conformal factor which 
makes (/> 2 = const. II However, it seems very difficult to 
prove a similar strong result for the present choice n = (T. 
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The almost causal precedence concept proposed by Woodhouse and a causality axiom based on it 
are analyzed. Properties ofthe almost future are examined and the above causality axiom is shown 
to be deducible for a causally continuous space-time. It is shown to be coinciding with known 
causality conditions for a reflecting space-time. Also the equivalence of various causality 
conditions for a reflecting space-time and a reduction of the causal continuity axiom are obtained. 
It is next shown that the above causality axiom is not stable under metric perturbations. Then the 
Seifert future concept has been analyzed and the Woodhouse causality is proved to be strictly 
weaker than the stable causality condition. It is concluded that as far as the uncertainties in the 
form of metric perturbations are concerned, the Seifert future is useful but not the almost future. 

P ACS numbers: 04.20Cv 

1. INTRODUCTION 

In the general theory of relativity, the space-time uni
verse is considered as a coIlection of all events which admits 
a 4-dimensional differentiable manifold structure. In the re
cent developments concerning the theory of occurrence of 
singularities in a space-time, the causal structure of the 
space-time has been extensively discussed and various con
ditions like strong causality, stable causality, causal continu
ity, etc. have been considered in detail, which would give a 
physicaIly reasonable space-time so far as the causality is 
concerned. 

However, Woodhouse! stressed that the differential 
and causal structures of space-time could be deduced rigor
ously from a set of physicaIly well-motivated axioms. He 
imposed only two global causality restrictions on the space
time of which the second one was more important and it 
essentially aimed at taking into account the uncertainties 
involved in the measurements, as implied by the quantum 
uncertainty principle. A very appealing justification was 
provided for the introduction of this second axiom, which 
related the causal and topological structures of space-time 
also. 

Here we aim to consider in detail the second causality 
principle given by Woodhouse. This causality principle 
turns out to be related to other global concepts concerning 
causality, like stable causality, causal continuity, etc. It al
lows to define a new set in the space-time, called the "almost 
future" of an event, which is always closed. Having intro
duced some preliminaries in the next section, Sec. 3 analyzes 
the properties of the almost future. Section 4 shows that this 
causality principle by Woodhouse is very closely related to 
other known causality conditions on a space-time. It can be 
deduced from the causal continuity of the space-time and 
for a reflecting space-time it actually coincides with some of 
the well-known causality conditions. In this section, a reduc
tion of the causal continuity condition of Hawking and 
Sachs2 has also been obtained. Section 5 then shows that in 

fact the Woodhouse causality principle is not a stable proper
ty of a space-time in the sense that a slightest perturbation in 
the metric could destroy it. Finally, the almost future defini
tion has been compared with the Seifert future definition 
which was introduced by Seifert.3 With the help of the analy
sis here it is proved that the second causality axiom of Wood
house is strictly included in the stable causality condition for 
a space-time. It is concluded that, where as the almost future 
concept cannot take the metric perturbations into account as 
shown by us, Seifert's definition is a more useful concept so 
far as the uncertainties involved in the observations are 
concerned. 

2. PRELIMINARIES 

Here M denotes a space-time which is a 4-dimensional 
differentiable manifold. M is a topological space under the 
natural manifold topology and is assumed to be connected, 
Hausdorff, paracompact, and time-orientable. A globally 
defined metric tensor is defined on M which allows us to 
speak of nonspacelike curves. The notations and conven
tions used will be the same as those of Hawking and Ellis.4 

Following Woodhouse,! we now state the concept of 
"almost causal precedence." He argued that since a real 
physical experiment can never be made sure to have been 
performed at a precise event of the space-time, we should 
think of an event as the limit of a converging sequence of 
neighborhoods. Hence we shall say that an event x almost 
causally precedes another eventy, denoted by xAy, if for all 
zEl-(x), I+(zr~r(y); or equivalently, iff or all zEl+(y), 
I-(z):JI-(x). It would be more reasonable physically to say 
that "x almost causally precedesy," rather than saying that 
"there is a nonspacelike curve from x to y." This is because if 
xAy, then every neighborhood of x in the manifold topology 
would contain events which will precede chronologically 
some events in any neighborhood of y. Because of this, no 
physical experiment will be able to tell that x and yare not 
causally related. As the causal precedence definition defines 
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the causal future (past) J+(x) for all xEM, with the help of the 
above almost causal precedence concept one can define the 
almost future and almost past for any xEM: 

A +(x) = ( ylx almost causally precedes y 1, 
A -(x) = ! yly almost causally precedes x j. 

This means 

A +(x) = (ylxAyj, 

A -(x) = {ylyAxj. 

Based on this, Woodhouse proposed the following prin
ciple of causality for a space-time: If for any x,yEM we have 
xAyandyAx, then we must have x = y. Note that this formu
lation includes the nonoccurrence of closed nonspacelike 
curves, because if such a curve occurred, then for any two 
different points x andy on it, it is easy to see that we have 
both xAy and yAx, which contradicts the Woodhouse cau
sality principle. The concept of almost causal precedence is 
made explicit by Fig. 1. 

Before we begin to analyze actually how successful this 
formulation of almost causal precedence idea is in taking the 
uncertainties into account, some more definitions are in or
der: Let SCMbe an open set. Then the chronological com
mon future r S is the set of all those points such that there is a 
timelike curve to any of these points from all points in S. 
Formally, 

{ I 
for all sES, there is a future } 

rS= Int zEM. .. . 
dIrected ttmehke curve from s to z 

The set !S can be defined dually. Note that !S and is are 
always open sets. 

A space-time M is said to be reflecting if for all x ,yEM, 
1 +(x):2 1 +( y) if and only if 1 -(y):21 -(x). Mis said to be causal 

FIG. I. The shaded region denotes a cut in the space-time. Here,YEA '(x) but 
yiJ·(x). Note that A ·(x)::>l'(x). From every neighborhoodN, of x, there is a 
nonspacelike curve to every neighborhood N2 ofy. Since ]-(y)::>]-(x), 
,VEl] -(x) also holds. The dotted regions show A ,(x), in which the boundary 
of the region is also included. 
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if it contains no closed nonspacelike curves. For the defini
tions as well as discussion on various other higher-order cau
sality conditions like future (past) distinguishingness, strong 
causality, stable causality, etc. we refer to Ref. 4. A space
time M is said to be causally continuous if it is both reflecting 
and distinguishing. Hawking and Sachs2 introduced this as
sumption on a space-time, which removes many global 
pathologies from it and the desirable features like the con
tinuity of global time functions etc. are introduced in M. The 
following lemma which is proved in Ref. 2. will be useful. 

Lemma 1: Let M be a reflecting space-time. Then 

i/-(x) = J+(x), !J+(x) = I-(x). 

Since the quantum uncertainty principle implies impre
ciseness in the measurements, it will not be possible to mea
sure the exact values of the metric at any point and hence the 
metric perturbations are to be taken into account. To achieve 
this, Seifert3 defined the set J.+ (x) as follows: 

J s+ (x) = n J+(x,ff>. 
g>g 

Here g> g means that the light cones of g are everywhere 
wider than g, i.e., every nonspacelike vector with respect to g 
becomes timelike with respect to g. We shall call the set 
J s+ (x) as the Seifertfuture of the event x and shall analyze it 
later. Hawking and Sachs2 have proved the following in this 
connection. 

Lemma 2: Let M be a causally continuous space-time. 
Then 

J s+ (x) = J + (x) for all xEM. 

Lemma 3: J s+ (x) is closed for all xEM. 

Also Seifert3 proved the following: 
Lemma 4: Let (Pn j be a sequence in I-(p) such that 

Pn-P. Then 
00 

n J s+ (Pn)C J s+ (p). 
n=l 

Lemma 5: A space-time M is stably causal if and only if 
J,+ is a partial ordering on M. 

3. SOME PROPERTIES OF ALMOST FUTURE 

Here we would like to prove certain results describing 
some properties of the almost future as defined with the help 
of the concept of almost causual precedence. These will illus
trate the nature of the almost future and also they will be 
useful for further examination of Woodhouse's formulation 
of causality principle. 

The following proposition follows from the definition of 
the almost future. 

Proposition 1: For all x,yEM, yEA +(x) if and only if 
xEA -(y). 

It is known that for a general space-time, the causal 
future J+(x) of some xEM need not be closed in the manifold 
topology. However, one can prove that the almost future of 
an event is always closed. 

Proposition 2: The almost future A +(x)is closed in the 
manifold topology for all xEM. 

Proof Let P be a limit point of A +(x) in the manifold 
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topology on M. Then there is a sequence I Pn I inA +(x) such 
thatpn-P. LetnowyEl'(p), thenpEl-(y), which is open, and 
hence a neighborhood of p. So there exists a positive integer 
no such thatpnEl-(y) for all n>no' So yEl +(Pn ) for all n>no' 
Since PnEA +(x) for all n, this gives r(Pn)Cr(z) for all 
zEl-(x). So yEl+(z) for all zEl-(x). Thus finally we have 
/'(p)Cr(z) for all zEl-(x) and so pEA '(x). 

Thus, whenever a sequence of events is in the future of 
an event, its limit it also in the future of that event according 
to the Woodhouse's definition, which is a physically reason
able feature. Also we note that the closeness of A '(x) in gen
eral may help to obtain a topology on the space-time in the 
same way as the openness of /'(x) gives a topology on it. 

In Fig. 1 the event yEA '(x). However clearly yEtI-ex) 
also. This suggests some relation between the almost future 
and the common future of the past of the event, which is 
established in general by the following: 

Proposition 3: 

Int[A '(x)] = t/-(x). 

Proof LetpEInt[A '(x)]. Then there is a simple region N 
containingp and contained within A '(x). Let qEl-(p)0N. 
ThenpEl'(q) and qEA '(x). Therefore /'(q)Cr(z) for all 
zEl-(x). This givespEl+(z) foralIzEl-(x). In the similar man
ner one can see that any point of N belongs to r(z) for all 
zEl-(x). HencepEt/-(x). 

Conversely, suppose pEt/-eX). Since tI-(x) is an open 
set, there is a simple region N such that pEN C t / -(x). So 
every point of N could be joined by a timelike curve from any 
point of I-ex). This givespENCA '(x). HencepEIntA '(x). 

The A '(x) definition attempts to take into account the 
imprecision of the measurements and the t / -(x) provides in
formation about future as decided by the overall past; both of 
which have turned out to be almost the same. This suggests 
the possibility that some information from the past of an 
event should probably determine its almost future. This is 
established to be true in general in the following result. 

Proposition 4: LetxEMand IXn I be a sequence in/-(x) 
such that Xn -+X. Then 

A '(x) = n J+(xn) = n r(xn). 
n=l 11=1 

Proof LetpEA +(x). Then/ +(p)CI +(xn ) for all n. Now 

letsEl+(p). ThenI +(s)~I +(p)~I +(xn ),SOSE I +(x,,). This 

gives pE 1+( p) ~ I +(xn) for all n. Hence PEn',;= 1 I +(xn) 

and soA +(x}Cn',;= 1 I+(xn)· 

Conversely, let pEn',; = I J+(xn). So pE/+(Xn) for all n, 
implying that/'(p)~J+(xn )for all n. Now letzEl-(x). Then 
xEl'(z), and /+(z) being open, xnEl'(z) after certain stage. 
Then for such x n ' J+(z) ~r(xn) ~J+(p). So pEA '(x). Since 

/'(x) = rex) is always true, the equality 

A +(x) = n',; = 1 r(xn) follows. 

4. WOODHOUSE CAUSALITY AND OTHER CAUSALITY 
CONDITIONS 

We would like to examine here the relationship between 
Woodhouse's causality principle and other known causality 
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conditions like strong causality, stable causality, causal con
tinuity etc. We call a space-time to be W-causal whenever 
xAy and yAx implies x = y for all events. 

It will be convenient first to consider the relationship 
between causal continuity and W-causality. We shall prove 
below that the W-causality of a space-time can be deduced 
from its causal continuity, i.e., causally continuous space
times will be always W-causaI. Thus W-causality turns out 
to be not an entirely new feature of a space-time but is deduc
ible from its reflectingness and distinguishing nature. 

To see the above, we prove two more results. The fol
lowing proposition shows that for a reflecting space-time, 
the almost future of a point turns out to be a simple and well
known set. 

Proposition 5: Let Mbe a reflecting space-time. Then, 

A +(x) = { ylxAyJ = J+(x). 

Proof By Proposition 3, Int[A +(x)] = tI-(x). Now by 
Lemma 1, t I -(x) = I ·(x). Hence taking closures on both the 
sides provides the result. 

Again a reflecting space-time exhibits a special type of 
symmetry in the following sense: 

Proposition 6: Let M be a reflecting space-time. Then, 

J+(x) = J+(y) iff xAy,yAx iff I-(x) = /-(y). 

Proof Let / +(x) = 1+( y). Then by the definition of the 
almost causal precedence, we have both xAy andyAx. 
Again, when xAy andyAx are both true, by the Proposition 
-- --

5,YEJ+(X) andxEJ+(y). This then givesr(y)~/+(x) and 
/+(x)~J+(y). This proves /'(x) = r(y). The final part also 
can be similarly proved. 

Thus for a reflecting space-time, the W-causalityaxiom -- --
can be stated as: xEI+(y),yE/'(x)=>x = y. Now when Mis 
causally continuous, letxAy andyAx hold. Then by Proposi
tion , rex) = r(y). So the distinguishingness implies that 
x = y, which finally shows that Mis W-causaI. Thus we have 
proved the following now: 

Theorem 7: Let M be a causally continuous space-time. 
Then Mis W-causaI. 

However, the converse of this theorem is not true. The 
example in Fig. 2 is a space-time which is W-causal but not 
causally continuous. Thus causal continuity strictly includes 
W-causality. 

Also with the help of Proposition 6 it is possible to re
duce the assumption of causal continuity. Causal continuity 
requires both reflectingness and distinguishingness as ori
ginally defined by Hawking and Sachs. However when M is 
reflecting, we have/'Cx) = /+(y) ifand only if/-ex) = I-(y). 
Because, suppose M is future distinguishing and reflecting, 
thenI-{x) = /-(y)wouldimplyr(x) = /'(y)byProposition 
6, which would give x = y by assumption. This proves that 
M is past distinguishing also. Hence we proved that the 
whole assumption of distinguishingness is not required to 
define causal continuity. 

Proposition 8: A space-time M is causally continuous if 
and only if it is reflecting and future (past) distinguishing. 

Such an equivalence between future and past distin
guishing conditions does not hold for a general space-time 
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FIG. 2. Arrows denote identificaton. Here M is causal, since there are no 
closed nonspacelike curves. Also Mis W-causal, but a slightest perturbation 
in the metric opens up the light cones and closed nonspacelike curves are 
produced; hence causality and W-causality both break down. Also, M is not 
stably causal or reflecting, but is strongly causal. 

which is not reflecting (see, for example, Fig. 37 of Ref. 4). 
Here M is past distinguishing but not future distinguishing. 

Now it is possible to point out the unifying power of the 
reflecting condition on a space-time in view of various other 
causality conditions, and also the relation of W-causality 
with them. Consider a reflecting space-time which is future 
distinguishing. Then Proposition 8 has shown that it will be 
past-distinguishing also, and hence M is distinguishing. 
Then Theorem 7 shows that M must be W-causal. Now 
Woodhouse! has shown that a W-causal space-time is dis
tinguishing in general. Hence for a reflecting space-time, the 
W-causality and distinguishingness are equivalent. Again 
Hawking and Sachs2 have shown that a reflecting space
time which is distinguishing (i.e., a causally continuous 
space-time) is always stably causal and strongly causal. 
Now, since it is known that stable causality imply strong 
causality which in turn implies distinguishingness (e.g., see 
Hawking and Sachs2), we have proved the following: 

Theorem 9: Let (M,g) be a reflecting space-time. Then 
the following are equivalent: 

(a) M is future distinguishing, 
(b) M is past distinguishing, 
(c) M is distinguishing, 
(d) Mis W-causal, 
(e) (M,g) is stably causal, 
(f) M is strongly causal. 

Thus for a reflecting space-time only future or past dis
tinguishingness or W-causality would become the single rea
sonable global causality condition, with no need to assume 
anything more about causality; which is not the case for a 
general space-time, where there is a separate need for each 
causality condition. 

5_ ON THE STABILITY OF W-CAUSALITY 

The W-causality formulation that we have been exam
ining here has the merit of having a simple and intuitively 
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clear physical interpretation. However, the previous results 
concerning the almost future and W-causality principle do 
not give the feeling that the new formulation could have 
superior features in comparison to what causality conditions 
are known. In particular, for a reflecting space-time, it just 
coincides with distinguishingness or any other condition 
mentioned in Theorem 9. 

Of course, this by itself does not decrease the impor
tance of W-causality formulation. The essential purpose for 
introducing the concept of almost causal precedence in the 
place of causal precedence is to take the observational uncer
tainties into account. Hence the important question which is 
to be asked is: Suppose (M,g) is a space-time which is W
causal. Shall it remain W-causal even after a small perturba
tion in the metric? One would require an affirmative reply to 
this in order to have the stability of the W-causality 
formulation. 

To reply this, we construct here in Fig. 2 an explicit 
example of a space-time in which W-causality holds, but 
which will breakdown with a slightest perturbation in the 
metric. In this space-time, for no two different points x and 
y, bothxAy andyAx holds; which implies W-causality. How
ever, as soon as a slightest perturbation is made in the metric 
to open up the light cones, closed nonspacelike curves arise. 
For any two different points x andy on any such curve, both 
xAy andyAx would hold as can be easily seen, and hence the 
new space-time is no longer W-causal. Thus the W-causality 
formulation may not be considered very useful so far as the 
metric perturbations are to be taken into account. 

Will it be possible to make the W-causality formulation 
a stable property of a space-time by changing the definition 
of almost causal precedence somewhat? The following result 
shows that going to neighborhoods of events rather than 
considering pasts or futures of the events woud be of no help. 

Proposition 10: Let x,yEM. Then x almost causally pre
cedesy ifand only iffor every neighborhoodNx ofx and Ny 
of y, there is a future directed nonspacelike curve from N x to 
Ny. 

Proof Suppose xAy holds. Then f+(y)Cf+(z) for all 
zEl-(x). Now letpENxnl-(x). ThenpEl-(x) and so 
f+(y)Cf+(p). Hence Nynl+(y)Cf+(p). Hence if we choose 
qENynl+(y), then there will be a nonspaceIike curve fromp 
to q, i.e, from Nx to Ny. 

Conversely, suppose p is any point of 1+( y). Then 
yEl-(p) which is a neighborhood ofy, since I -(p) is open. 
Again let z be any point of I - (x). Then in the similar manner 
1+ (z) is a neighborhood of x. Hence by assumption there 
must be a nonspacelike curve from some tEl +(z) to some 
eventsEl-(p).SopEl +(s)CI +(1 )CI +(z). Thereforewehave 
1+( y)CI +(z) for all zEl-(x), that is xAy holds. 

For a reflecting space-time the W-causality fully con
curs with other well-known causality axioms. Where does it 
stand for a general space-time? To have an idea about this, 
again the example given in Fig. 2 is useful. Here the space
time is strongly causal but not stably causal. This suggests 
that W-causality should lie between strong causality and sta
ble causality for a general space-time. We shall prove in the 
next section that the stable causality implies W-causality in 
general. 
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FIG. 3. In the space-time here, z iA +(x) butz E J,+ (x), soA +(x)~J,+ (x). 

Again xAy and yAz hold but not xAz. On the other hand, y E J ,+ (x), 

z E J,+ (y) and z E J,+ (x) also hold. 

6. THE ALMOST FUTURE AND THE SEIFERT FUTURE 

As it has been mentioned earlier, Seifert3 defined the 
future J,+ (x) of an event x in the space-time by taking met
ric perturbations into account. It should be interesting to 
compare this definition of the future with the almost futurer 
definitions, since both have a similar type of motivation. 
Though the almost future concept failed to take the metric 
perturbations into account, the Seifert future accounts for 
these properly. The following result shows when these two 
types of futures are always equal in a space-time. 

Proposition 11: Let M be a causally continuous space
time. Then 

J,+ (x) = A >(x) for all xEM. 

Proof For ~uch a space-time 

J s+ (x) = n J+(x,ff) = J+(x) by Lemma 2. 
ii>g 

Again, J >(x) = I >(x) = A >(x) for such a space-time as Pro
position 5 shows. 

However, for a general space-time they are not equal. 
Consider the space-time given in Fig. 3. Here the event 
zEt4 + (x) because the future of any event rEI -(x)is fully ob
structued by cuts in M and so it cannot contain the future of 
the event z. But clearly for all metrics g> g, z E J t (x) be
cause a slightest perturbation in the metric would open up 
the light cones to give way to a nonspacelike curve to reach 
from x to z. Hence z E J,+ (x) and the two futures are not 
equal. 

There is an essential difference between the almost fu
ture and the Seifert future. The relation J s+ between events 
in a space-time is a transitive one, i.e., Y E J s+ (x) and 
z E J s+ (y) imply Z E J s+ (x). However, this is not the case for 
the relation A +, which is again clear from Fig. 3. There 
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clearly xAy and yAz hold, but as we have seen, xAz is not 
true; which is the breakdown of the transitivity property. 

The relationship between the almost future and the Sei
fert future of an event in a general space-time is obtained in 
the following result. 

Proposition 12: Let M be a space-time. Then for all 
xEM,A +(X)kJ,+(X). 

Proof By the definition of J s+ (x), clearly I + (x) CJ .+ (x). 

Now by Lemma 3, J,+ (x) is closed, hence I +(X)kJ,+ (x). 
Letnowp EA +(x). ThenI +(p)CI + (z)forallz E I -(x). Con
sider now a sequence ! Pn J inI-(x)convergingtox. Then by 
Lemma4wehaven:= I J.+ (Pn) CJ,+ (x). Now I +( p) CI +(z) 

for all z E I - (x) implies that pEl + (z) for all z E I - (x). So 
P EJ.+(Z) for allz E I -(x) and sop E n:= I J s+ (Pn)' since 
Pn EI-(x) for all n. This givesp EJ.+(X). 

With the help of the above result now it can be estab
lished that the W-causality principle is strictly weaker to the 
stable causality condition. 

Theorem 13: Let Mbe a space-time which is stably 
causal. Then M satisfies the W-causality principle. 

Proof Seifere has shown that the stable causality of M 

implies that the relation J s+ is a partial order on M, i.e., 
x E J s+ (y), y E J s+ (x)implies x = y. Now suppose xAy and 
yAx hold. Then YEA + (x) and x E A + (y). Since 
A +(x)CJs+ (x) for all x EM, this givesy E J.+ (x) and 
x E J.+ (y). This implies x = y, that is, Mis W-causal. 

The W-causality principle is stated as whenever 
YEA +(x) and x E A +( y) then we must have x = y. This 
means that the relation A + between the events in the space
time must be antisymmetric. We have shown that this is not 
a stable property of the space-time. On the other hand, Sei

fere has proved that whenever the relation J s+ is a partial 
order on M, M must be stably causal. Since J s+ is reflexive 
and transitive by definition, this means that the antisym
metry of J s+ ensures the stability of a particular causality 
formulation. Hence the perturbations in the metric, which 
are important in view of the quantum uncertainty principle, 
have been suitably taken into account by the Seifert defini
tion but not by the almost causal precedence idea. 
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Space-times admitting a null Killing vector are studied, using the Newman-Penrose spin 
coefficient formalism. The properties of the eigenrays (principal null curves of the Killing 
bivector) are shown to be related to the twist of the null Killing vector. Among the electrovacs, the 
ones containing a null Maxwell field turn out to belong to the twist-free class. An electrovac 
solution is obtained for which the null Killing vector is twisting and has geodesic and shear-free 
eigenrays. This solution is parameterless and appears to be the field of a zero-mass, spinning, and 
charged source. 

PACS numbers: 04.20.Jb 

1. INTRODUCTION 

The earliest known example of space-times admitting a 
null Killing vector is the class of plane-fronted waves. 1 In 
contrast to the case with timelike or spacelike Killing sym
metries, the existence of a null motion is restrictive enough a 
condition on a space-time to attempt a full analysis of the 
governing equations. Indeed, Dautcoure has completely 
solved the vacuum Einstein equations under the condition. 
Electrovacua consisting of a source-free Maxwell field and 
of gravitation have apparently a much richer structure. 
Kramer3 has studied electrovacua admitting a hypersurface
orthogonal null Killing field using scalar potentials. As for 
matter sources, the perfect fluid does not allow physically 
meaningful metrics with a hypersurface-orthogonal null 
motion.4 The twisting perfect fluid problem, restricted to 
algebraically special metrics, has been taken up by Wain
wright5 (cf. Table I). 

In this paper we approach the null Killing vector using 
the Newman-Penrose spin coefficient formalism. 6 We be
lieve that spin coefficients suit ideally this particular type of 
study; and further, that a formalism does not grow "old" 
(unlike people who apply it). 

When the tetrad vector I,l is chosen to be the null Kill
ing vector, the Killing equation can be expressed as a set of 
algebraic conditions on the spin coefficients (Sec. 2). While 
experimenting with several conceivable gauge conditions on 
the rest of the null tetrad, we came across the notion of eigen
rays or principal nuli curves of the Killing bivector.7 This 
notion, quite unexpectedly, turns out to be useful also with a 
null Killing vector, thus we present a detailed analysis of it in 
Sec. 3. We find that there are two eigenray congruences 
which coincide when the Killing field is hypersurface-or
thogonal. The null Killing trajectories themselves are eigen-

TABLE 1. Space-times admitting a null Killing vector. 

~ 
hypersurface-

Source orthogonal twisting 

Vacuum Dautcourt2 none 
Perfect Wainwright': 
fluid p +p =Oonly" alg. special 
Electrovac Kramer' this paper 

rays. When they are twisting, it is possible to orient the tetrad 
vector nl' along the second eigenray congruence. In this 
gauge, most of the curvature invariants are given algebra
ically and the number of NP equations to be integrated di
minishes substantially. 

In Secs. 4-6 we apply our ideas on electrovac fields. In 
Sec. 4 we show that the second eigenray has a preferred ori
entation also with respect to the Maxwell field (although this 
relation is nonlocal). In Sec. 5 we prove that the null Killing 
vector is hypersurface-orthogonal in the presence of a null 
Maxwell field. Finally, in Sec. 6 we find a new solution of the 
Einstein-Maxwell equations characterized by both eigenray 
congruences geodesic and shearfree. Remarkably, this latter 
condition characterizes also the Kerr-Newman metric.s 

However, the structure of our parameterless solution is com
pletely fixed. It has a twisting null Killing vector and a non
null Killing vector commuting with the nun one. The solu
tion appears to represent the field of a charged, spinning 
particle moving with the speed of light, the Maxwell field 
strangely twisting around the world line of the source. 

2. BASIC STRUCTURES 

The existence of a null Killing vector II' satisfying 

I,l;" + (:ll = 0 (2.1) 

and 

1,'/'< = 0 (2.2) 

entails some basic relations in any space-time. Thus the co
variant derivative of Eq. (2.2) with Eq. (2.1) gives 

I,I; v I " = O. (2.3) 

The null Killing vector I,l is tangent to a null geodesic 
congruence. 

For further discussion, it will be quite advantageous to 
introduce the complex null vector ml' and the real null vector 
nil, in addition to I'l, thereby completing a Newman-Pen
rose (NP) null tetrad.6 Recall that the nonvanishing scalar 
products of these vectors are ll'nl' = 1, m,,in,l 

= - 1. We 
then express the Killing property (2.1) of I" in terms of spin 
coefficients. From Eq. (2.3) we obtain 

K==: lit; v mI'l ,. = O. (2.4a) 

We find from Eq. (2.1) that the shear and the divergence of 
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the null Killing congruence vanish: 

u-ll';vml'mv = 0, (2.4b) 

P + p=ll';v(ml'iiiV + iiil'mV) = O. (2.4c) 

The rest of the tetrad components of Eq. (2.1) read 

a + f3 + T-II';v(nl'mV + ml'nV) = 0, (2.4d) 

Y + Y'==dl';vnl'n v = 0, (2.4e) 

E + E II';vnl'l v = O. (2.4f) 

A null Killing vector II' is a principal null vector of the 
curvature. This follows at once from the Ricci equation 
(4.2b) ofNP, 

1/10 = o. (2.5) 

We can choose any propagation law for the tetrad vec
tors mil and nl' which preserves scalar products. We find it 
convenient to require Lie propagation along II'. Thus we set 

!!',nl'-==nl';) v -11';v nv = 0, 

~ml'=ml';vIV -11';vmv = O. 

Taking tetrad components of (2.6) we have 

r + 1T" = 0, 

P - 2E= O. 

(2.6) 

(2.7a) 

(2.7b) 

With this choice of the tetrad, the action of the absolute 
derivative operator D =II'V I' on any spin coefficient or cur
vature invariant gives zero. 

3. EIGENRA YS 

We next consider the algebraic properties of the Killing 
bivector II';v' We find that the clarity of the discussion is 
enhanced in a spinor notation. 

The symmetric spinor representing a Killing bivector 
can be written 

GAB = V(AA'IB)A" (3.1) 

where V A A' is the covariant spinor derivative. The principal 

spinors 1] A of GAB are defined by the eigenvalue problem,7 

(3.2) 

This equation has two solutions for the eigenspinor 1]A' 

When the two eigenspinors are proportional to each other 
we say that the Killing bivector is degenerate. The integral 
curves of the eigenspinors are also termed the eigenrays of 
the gravitational field. 7 

When the Killing vector is null, it can be written in 
spinor terms as 

(3.3) 

Equation (3.1) takes the form 

GAB = O(A V B)A'OA' + OA' V(AA'OB)' (3.4) 

Transvecting (3.4) with the dyad spinors 0A and 
~(OAlA = 1), we obtain 

GOO=GABOAoB = 0, (3.5a) 

G()J=GABOAl
B = - p, (3.5b) 

GII=GABlAlB=r-iJ-a. (3.5c) 

1249 J. Math. Phys., Vol. 22, No.6, June 1981 

By Eq. (3.5a), the null Killing trajectories themselves are 
eigenrays, a fact recognized already by Debney.9 Equation 
(3.5b) shows the condition of degeneracy to bep = O. This is 
to say that the Killing trajectories are hypersurface-orthogo
nal. In vacuum, the Ricci equation (4.2a) ofNP readsp2 = O. 
Thus a null Killing field in vacuo is always hypersurface
orthogonal. (An exhaustive treatment of the vacuum prob
lem has been presented by Dautcourt2.) The electrovac fields 
admitting a hypersurface-orthogonal null Killing vector 
have been studied by Kramer. 3 In what follows we shall con
sider algebraically general (or twisting) null Killing fields 
characterized by 

(3.6) 

Since the Killing bivector Lie propagates along the 
Killing vector II', we are free to choose the dyad spinor lA, 

the second principal spinor of GAB' With this choice, the 

tetrad vector nl' becomes tangent to the corresponding eigen
rays. From Eq. (3.5c) we have r - iJ - a = O. Comparing 
with (2.4d), we find that our eigenray condition is 

T = O. (3.7) 

The remaining indeterminacy in the phase of the basic spin
ors amounts to a freedom in choosing the phase of the tetrad 
vector ml': 

(3.8) 

where DC = O. 
The vector nl' could, of course, be given any orientation, 

preferably consistent with Lie propagation. In Sec. 5, for 
example, it will prove useful to choose nl' along a principal 
null direction of the Maxwell field. An interesting conse
quence of our eigenray condition T = 0, when imposed upon 
the null tetrad, is that most components of the Weyl tensor 
but 1/14 are given by algebraic expressions, according to the 
Ricci equations 

NP(4.2): 
(b) 
(c) 
(h) 
(i) 

1/10 = 0, 

1/11 = - <POI' 
1/12 = 2E/1 - 2A, 
1/13 = 2EV - <P21 . 

(3.9a) 
(3.9b) 
(3.9c) 
(3.9d) 

The remaining Ricci equations are, eliminatingp by Eq. 
(2.7b) and setting T = 1T" = 0, 

NP(4.2) 

(a) 4E2 + <Poo = 0, 
(d) 8E = - <P IO , 

(3. lOa) 
(3. lOb) 

(f, h) .:1E = - E(,u + /1), <PII = - E(,u - jl) + 3A (3.lOc) 
(g) 2EA = <P20, 

(j) .:1..1. - 8v = - (,u + jl - 4y)A. + 2av - 1/14' 
(I) 8a + 8a= 4aa + 4EY + 6A, 
(m) 8..1. - 8/1 = 2(EV + 2aA + <P21 ), 
(n) 8v -.:1/1 = /1 2 + 2av + Ai + <P22, 
(r) .:1a - 8y = EV + aA + <P21 - (2y + jl)a. 

(3.lOd) 
(3.lOe) 
(3.1Of) 
(3. 109) 
(3.lOh) 
(3.101) 

Operators 8 and.:1 each commute with D and their non
vanishing commutators are 

M -.:18 = - liD + i8 + (,u - 2y)8, 

88 - 88 = (,u - jl)D + 4E.:1 - 2a8 + 2a8. 

Lukacs, Perjes, and Sebestyen 

(3.11a) 

(3.11b) 

1249 



                                                                                                                                    

Equations (3.10) and (3.11), together with the appropriate 
matter equations, govern space-times admitting a twisting 
null Killing vector. 

4. ELECTROVACS 

Electrovac fields consisting of a source-free Maxwell 
field tPm and of gravitation are characterized by the compo
nents of energy-momentum, 

tl>mn =tPmin' A =0. (4.1) 

The algebraic field Eqs. (3. lOa), (3.lOc), and (3.lOd) 
become 

- 2 
tPotPo = - 4E , 

tPlil = - Eip -[i), 

tP2io = 2EA.. 

Equations (4.2) are satisfied by setting 

tPo = - 2iEeiH, 

tPl = tPeiH, 

tP2 = iAeiH, 

(4.2a) 

(4.2b) 

(4.2c) 

(4.3a) 

(4.3b) 

(4.3c) 

where the real function H is a common phase of the Maxwell 
field and tP is a complex function subject to 

tPi = - Eip - {i). (4.4) 

In Eqs. (4.3), the spin coefficients E and A. feature as 
amplitudes of the Maxwell field. Recall, however, that the 
tetrad has been oriented along the two eigenrays of the non
degenerate Killing bivector (cf. preceding chapter). And we 
find here as a bonus that the tetrad shows a preferred orien
tation also with respect to the Maxwell field. 

The admissible phase transformations ml' --->-ml'eiC [Eq. 
(3.8)] affect the electromagnetic field components as follows, 

tPo-tPoeiC, 

tPl-tPl' 
tP2-tP2e - iC. 

Comparing with (4.3) we have 

H-H+C, 

tP-tPe - iC. 

(4.5) 

(4.6a) 

(4.6b) 

Maxwell's equations in terms of spin coefficients [Eqs. 
(A 1) of NP] can now be written 

itPDH + 2EBH = 4iaE + 8tPE, 

A.DH + BtP + itPBH = - 2iEA., 

otP + itPoH - 2E~H = 2iE(ji + 2y), 

(4.7a) 

(4.7b) 

(4.7c) 

iDA - AtjH - ~tP - i¢~H = 2iEV + 2f-l¢ + 2iaA.(4.7d) 

We take theD derivative ofEqs. (4.7) and recall that the 
derivative operators all commute with D. Noting that H is 
the only quantity here with a possibly nonvanishing D de
rivative, we obtain 

- 2€] [Dl!H] = 0 
itP DoH ' 

(4.8) 

- 2E] [DOH] = o. 
itP D~H 
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Each of these equations has the determinant, 

Det = 2EA. - tP 2. 

When Det = 0, we have 

tPOtP2 - tP12 = 0, 

(4.9) 

(4.10) 

characterizing an algebraically special Maxwell field. Then, 
Eqs. (4.8) do not completely determine the D dependence of 
the phase H. Such algebraically special Maxwell fields will 
be the subject of Sec. 5. 

When the Maxwell field is algebraically general, Eqs. 
(4.8) tell us that all derivatives of DH vanish. Thus, 

DH=2c, (4.11) 

where c is a real constant. The condition DH = 0 character
izes Maxwell fields sharing the null symmetry of the space
time, i.e., having a vanishing Lie derivative along [I'. In Sec. 
6 we shall investigate algebraically general Maxwell fields 
for which both eigenray congruences are geodesic and shear
free. 

5. NULL MAXWELL FIELDS 

In this section we show that at least one of the null 
Killing fields in an electrovac space-time containing a de
generate Maxwell field, 

tPOtP2 - tPl2 = 0, (5.1) 

[Eq. (4.10)] is hypersurface-orthogonal. We do so by assum
ing first that /1' has a c.:url, Imp = - 2iE#0, and finding 
subsequently that nil is a hypersurface-orthogonal null Kill
ing field. 

We find it convenient to dispense with the eigenray con
dition adopted for the spinor dyad in other chapters of this 
paper. Instead, we choose the dyad spinor LA coincident with 
with the principal null direction of the (degenerate) Maxwell 
field. This is possible according to the Ricci equation 
tPoio + 4E2 = 0 [Eq. (4.2) of NP], from which tPo#O, i.e., the 
principal null direction of the Maxwell field does not coin
cide with the Killing vector [I'. We then have 

tPo = - 2iEeiH, 

tPl = 0, 

tP2 = 0, 

(5.2) 

where H is a real phase function. We use the phase freedom 
(3.8) to make 

7 -1,l;Vml'n v = T. 

For the reader's convenience we now list some neces
sary equations from NP. First, Maxwell's equations [(A. 1 ) of 
NPl become 

BE + iEBH = (7 + 2a)E, 

0= A.E, 

- .1E - iE.1H = Ip - 2Y)E, 

O=VE. 

Since E#O by assumption, in what follows we have 

A. = v = O. 

From the Ricci identities and commutators we need 
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NP (4.2d) 
NP (4.2e) 
NP (4.2t) 
NP (4.2g) 

8!ln€ = 7, 
8 !In€ = 7, 

Li !In€ = (l/2€)(r - 1/12)' 
87= -2a7, 

87 = 2€ji + 2(a + 7)7 + iF2, 
Li7 = - 2Y7 + 1/13' 
1/14 = 0, 

(5.4a) 
(5.4b) 
(5.4c) 
(5.4d) 

NP ( 4.2h) 
NP (4.2i) 
NP (4.2j) 
NP (4.21) 
NP (4.2r) 
NP (4.4) 

8a - 8/3 = aa + f3iJ - 2a/3 + €(3,u - ji + 4y) - 1/12' 
Lia - by = - (2y + ji)a - 27Y - 1/13' 

(S.4e) 
(5.4t) 
(5.4g) 
(S.4h) 
(S.4i) 
(S.4j) 

(5.4k) 
88 - 88 = (ji - ,u)D - 4€Li - (2Ci + 7)8 + (2a + 7)8, 
8L1 - Li8 = 27Li + (.u - 2y)8. 

Computing (88 - 88)!In€ and using (S.4a), (S.4b), and 
(S.4d) we get 

(S.S) 

which, together with (S.4d) and (S.4e), yields 

8a7 + 6r + €(3ji -,u) = O. (S.6) 

Using (S.4) in the Maxwell equations (S.3), we obtain 

8R = i(2a - 7), 

by means of which we have 

8lncPo = 37 - 2a, D IncPo = lOiq 
81ncPo = 2a + 7, (S.7) 
LilncPo = 2y - ,u, 

where q = frPR, and 

8q =8q = Liq = O. (S.8) 

Application of the commutators (S.4j), (S.4k), and the com
plex conjugate of (S.4k) on IntPo, and use of (S.4b) and (S.4i), 
gives us 

r + (€ - iq)(ji -,u) = 0, 

8,u = 2,u7 - ji7 + 1/13' 

8ji = - ji7 - S1/I3' 

(S.9a) 

(S.9b) 

(S.9c) 

respectively. The action of the complex conjugate of (S.4k) 
on 7 yields 

(S.lO) 

Assume now 7#0 and take the 8 derivative of(S.9a). 
Using the same Eq. (S.9a) together with (S.6), (S.9b), (S.9c), 
(S.lO), and (S.4a), we get 

€(7ji - S,u) + (€ - iq)(2,u - 6ji - 12$") = 0, (S.II) 

where 5 = 1/1317, and we have 85 = 41/13" Applying 8 twice 
onEq. (S.II)and using Eq. (S.9), (S.6), (S.lO), and (S.4a) again, 
we get two further relations of a similar structure; 

€( - 4,u - 165) + (€ - iq)(,u + ji - 45) = 0, (S.12a) 

€( - 7,u + 3ji - S45") + (€ - iq)(,u - ji - 105) = O. 
(5.12b) 

The determinant of the homogeneous system (5.11) and 
(5.12) for the unknowns,u, ji, and 5 is 

- 3€ - 2iq € + 6iq - 12€ + 12iq 
- 3€ - iq € - iq - 20€ + 4iq . 
- 6€ - iq 2€ + iq - 64€ + lOiq 
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It does not vanish unless q = O. In this case, however, we 
have from Eq. (S.l1) and from (5.12a) that 5 = 0 and,u= O. 
The latter, using (S.9a) gives 7 = O. Whether or not the deter
minant vanishes we have 

,u = 0, 7 = 0, 1/13 = 0, 

contradicting our assumption 7#0. 
Now we have arrived back to the eigenray condition 

7 = 0 and the freedom of the choice of C in (3.8) is again at 
our disposal. The spin coefficients a and y transform under 
(3.8) as 

a--+a + ~i8C, 
(5.13) 

y_y + !iLiC. 

The Ricci equations (S.4h) and (S.4i) arejust the integrability 
conditions ensuring the existence of a real function F such 
that 

a = -i8F, 

Y = I"L1F, (S.14) 

DF=O. 

Choosing C = E, we can set a = f3 = y = O. 
Summarizing our results on the null Maxwell field, the 

spin coefficients all vanish except € and p (which are con
stant) and I/Ii = 0 (i = 0, 1,2, 3, and 4). The space-time is 
conformally fiat, and by replacing I "-n" in Eqs. (2.4), n" is a 
hypersurface-orthogonal null Killing vector. Thus we have 
reduced the class containing an algebraically special Max
well field to one that has been studied by Kramer. 3 

6. THE SOLUTION WITH GEODESIC AND SHEAR-FREE 
SECOND EIGENRAYS 

In this section we present a new class of electrovacs with 
a twisting null Killing vector. What we require is that the 
second eigenray congruence be also geodesic and shear-free. 
We borrow this condition from the timelike Killing problem 
where solutions with geodesic and shear-free eigenrays are 
some plane-fronted wave and Kerr-Newman metrics. l

•
8 

The eigenrays with tangent vector n" are geodesic and 
shear-free when 

7=0, V=,1 =0. 

From Ricci equations (3.9) and from (4.3c), 

1/10 = 1/13 = 1/14 = cP2 = O. 

Lukacs, Perjes, and Sebestyen 

(6.1) 

(6.2) 

1251 



                                                                                                                                    

Let us denote real field variables by Roman capitals. Then 

E=iE, 

p = 2iE. 

(6.3) 

(6.4) 

The non vanishing components of the Maxwell tensor are [cf. 
Eqs. (4.3)] 

</Jo = 2EeiH, 

</JI = </JeiH
• 

(6.5) 

(6.6) 

Using the phase transformation ml'-eiCml' [Eq. (3.8)], it is 
possible to eliminate the spin coefficients a and r [cf. Eq. 
(5.13)], 

a=r=o. (6.7) 

A constant phase shift in ml' remains still allowable. Ricci 
equations (3.9) and (3.10) and Maxwell's equations (4.7) 
become 

1/11 = - 2E¢} 
I/Iz = 2iEfl ,E = !Imp;60, 

81nE= - 2i¢, 

.:1lnE = -Iji + [i), 
8fl = 0, 

.:1fl = - fl z, 

</J¢ = - iE Iji - [i), 

D</J = 0, 

8</J = 2iE.:1H - (!DH - 4E)1ji - [i) - 2E[i, 

8</J = - iE -I(!DH - 4E)</J z, 

.:1</J = - i</J.:1H - 2fl</J· 

The nonvanishing commutators (3.11) take the form 

.:18 - 8.:1 = - fl8, 

88 - 88 = Iji - [i)D + 4iE.:1. 

(6.8) 

(6.9a) 

(6.9b) 

(6.9c) 

(6.9d) 

(6.ge) 

(6.lOa) 

(6.lOb) 

(6.lOc) 

(6.lOd) 

(6.11a) 

(6.l1b) 

We shall assume </J ;60 since the Maxwell field would other
wise be degenerate. Then Eq. (4.11) holds: 

DH = 2e, e = const. (6.12) 

Commutator (6.l1b), when acting on H, yields 

.:1H = - ~ eZ 
- lOcE + 20E

Z

Iji _ [i). (6.13) 
2 (e-5E)E 

All the derivatives of the Maxwell field are now given explic
itly. Equation (6.ge) provides us 8fl. We obtain further new 
equations by application of the commutators (6.11a) and 
(6.llb) on the spin coefficients and on </J. When the commu
tators are applied to the spin coefficients involving E, only 
identities result. On the other hand, from the commutators 
of fl we get 

elji - [i) = 0. (6.14) 

Thus when e;60, fl must be real. However, Eq. (6.ge) yields 
</J = ° when fl is real which has been excluded. Thus we have 
established the 

Theorem: Metrics with a twisting null Killing symme
try and with both eigenrays geodesic and shear-free require, 
by the Einstein-Maxwell equations, a nonnull electromag
netic field to Lie propagate along the Killing vector. 
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Assuming now that the Maxwell field Lie-propagates 
along II', i.e., e = 0, the field equations form a closed system 
under the commutators. Since D and.:1 commute we can 
choose a coordinate system xl' = (u, v,;, t),fl = 0,1,2,3 in 
which 

and 

ml' = Ulc% + 118{ + taO';, a = 2,3. 

There remains the coordinate freedom 

u' = u + F(;, t), 

v' = v + G (;, t), 

;'=;'(;). 

(6.15) 

(6.16) 

(6.17) 

Applying the commutators (6.11) on the coordinates, we ob
tain equations for the quantities 

(mi) = (UI, 11, tal, i = 0, 1,2,3. 

These are 

Dmi=O, 

and 

8w - 8U1 = fl - ii, 
8li - 811 = 4iE, 

8t a 
- 8t a = 0. 

(6.18) 

(6.19) 

TheDand.:1 equations among (6.9), (6.10) and (6.18) can 
be immediately integrated with the results 

fl = l/[v + iWO(;, t)], 

E = EO(;, t)l(v2 + W02) 

</J = </J 0(;, t)/(v - iWO)2, 

H = HO(;, t) + 211n((v + iWO)/(v - iWO)), 

</J o¢o + 2Eowo = 0, 

mi = miO(;, t)/(v + iWO), 

(6.20) 

where, as usual, a degree sign denotes functions independent 
of u, v. Substituting these expressions into the remaining 
equations we get, introducing the "edh" operator d = t oaaa' 

dEO = 0, (6.21a) 

dHo = 0, (6.21b) 

d¢o = 0, (6.2lc) 

d</J ° = - 2Eo, (6.21d) 

<p" = dWo, (6.21e) 

11 = i¢o, (6.21f) 

</J o¢o + 2Eowo = 0, (6.21g) 

dwo - du.l" = - 2iWo, (6.21h) 

dta' - dt a' = 0. (6.2li) 

The first Eq. (6.21a) means EO=2a = const. By con
stant dilation of II', either a = lor a = ° can be achieved. 

Lukacs, Perjes, and Sebestyen 1252 



                                                                                                                                    

Similarly, HO = const by (6.21), giving a constant duality an
gle. A constant duality transformation is a trivial symmetry 
of the Einstein-Maxwell equations. Equation (6.2li) shows 
that 

(6.22) 

can be set by the transformations (6.17). 
The rest of Eqs. (6.21) can be integrated easily to obtain 

_ 4a v - iWo _ 2a( 
¢o- (v+iWo( ¢I- (v+iWo( ¢2=0, 

ITt _ - 8a2
; 1 

CJlo=O, '1'1- , 
v2 + wo2 (v + iWO)2 

CJI _ 4ia 1 
2 - v2 + wo2 V + iWo' 

CJl3 = CJl4 = 0. 

We construct the metric by using 

gl'v = Il'nv + nI'l v _ ml';nv _ ;nl'mv. 

Thus we obtain, setting; = rei"" 

ds2 = 2(du + lar4dtp )(dv + ardtp ) 
_ !(v2 + a2r4 )(dr + rdtp 2), 

(6.23) 

(6.24) 

(6.25) 

wherea = Oor 1 and WO = ar. When a = 0, we have the line 
element of Minkowski space-time in a strange coordinate 
system. These coordinates present a special case of what 
Synge calls Godel-type metrics. to We find that usual Min
kowski coordinates are given by the transformation 

u = (t + z)/v2 + rv/4, 

v = (t - z)/v2, 

x = vrcostp, 

y = vrsintp. 

(6.26) 

Our solution has no free parameter and it has two Killing 
vectors only: 

K~ =t5{:, 
(6.27) 

Ki = Of· 
K ~ = II' is the null vector we started with, and K i can be 
interpreted as a rotational symmetry around the z axis when 
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v2 
- r4 > 0. Otherwise K i is not spacelike. The curvature 

invariants vanish when v or r goes to infinity. The limit V-+oo 

with r kept finite leads us into a Minkowskian region. 
When v = const and r goes to infinity, the curvature 

invariants vanish, but K i becomes timelike: this region dif
fers substantially from a Minkowski space-time. There is a 
singularity at v = r = 0. This solution makes it difficult to 
present a picture of its own source since no continuous flat
space limit of it exists. Nevertheless, we attempt to make a 
guess based on the related Minkowski metric with coordi
nates (6.26). Thus the singularity appears as a point source 
moving along the z axis with the speed of light. 

Our solution is not the only one where a source moving 
with the speed of light creates also an electromagnetic field. 
Rather, it appears to be the spinning analog of Bonnor's 
"nullic1e" solution. II However, unlike in the case of the nul
lic1e, the charge and spin parameters are both fixed now. 

Although the metric (6.25) is axially symmetric, a phase 
factor in the Maxwell field [cf. Eq. (6.23)] depends on tp. 
Hence this solution may be viewed as an explicit example of a 
zero-mass geon. 
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1. INTRODUCTION 

Stationary axisymmetric solutions of the Einstein equa
tion attracted the interest of early investigators since the as
ymptotic flat ones are candidates for the description of the 
exterior gravitational field of a uniformly rotating star. Their 
interest was further increased when their study revealed the 
existence of an enormous algebraic structure, namely, the 
existence of an infinite dimensional symmetry group of 
transformations which preserve the equations. This symme
try group, discovered first by Geroch, I was further enlarged 
by Kinnersley and Chitre2

-
5 by the inclusion of electromag

netism and it was adapted to a form suitable for generating 
solutions of the Einstein or Einstein-Maxwell equations. 
Utilizing these developments, a method was developed6

•
7 

which applied to any known stationary, axisymmetric, as
ymptotically flat solution produces a new asymptotically flat 
solution with any (finite) number of additional parameters. It 
was also conjectured6

•
7 that the method applied to the gener

al static (Weyl) solution gives the general stationary, axisym
metric, asymptotically flat solution. But although the re
quired steps for the construction of the new solutions are 
straightforward and completely algebraic, the required cal
culations for the introduction of more than a few additional 
parameters soon become formidable. 

In the present paper we study the multipole moment 
structure of the spacetimes which are obtained by applying 
the method of (If to the general Weyl metric. More 
precisely: 

i) We determine the leading multi pole moments of the 

resulting solutions. 
ii) We determine the Weyl solution which should be 

used and the transformations which should be applied for 
the construction of any given stationary, axisymmetric 
solution. 

iii) We obtain the above i) and ii) for all three different 
algorithms suggested in (I). 

The central idea is to apply the algorithms (which cor
respond to different sets of transformations) on the axis of 
the aximuthal symmetry. It was realized that by restricting 
the consideration to the axis it was possible to perform the 
otherwise formidable calculations. It turns out that, al
though insufficient to determine the metric itself, the knowl
edge of the Ernst8 potential on the axis (which is what the 

alPartially supported by National Science Foundation Grant #Phy 78-
0672 J. 

hlNow in the Astronomy Department, University ofThessaloniki. Thessa
loniki, Greece. 

algorithms compute) is sufficient to determine the mutipole 
moment behavior of the solution. 

Section 2 reviews the method. Section 3 determines the 
multipole moments of the solution and Sec. 4 determines the 
transformations which generate any given solution. 

2. REVIEW 

Let (M, gab) be a stationary, axisymmetric, vacuum 
spacetime which satisfies the Einstein equation Rab = 0 and 
which admits two independent Killing fields which com
mute and for which the two-dimensional submanifolds or
thogonal to the Killing fields are integrable and spacelike. 
Then the spacetime line element can be cast into the form 

ds2 = Ao(dt)2 + UI(dt )(d¢) + Aid¢)2 
_ {} 2[(dp)2 + (dZ)2], (1) 

where the Ats, essentially the (squared) norms of the two 
Killing fields, satisfy 

(2) 

and fl is a conformal factor on the two-dimensional mani
fold of orbits. The Ai's and {} are functions only of the cylin
drical coordinates p and z. Introduce the twist (potential) liJo 
of the timelike Killing field by 

liJo.P = A ii (AI) } 
P Ao.z 

liJo.z 
= _ A ii (A I ) . 

P Ao.p 

(3) 

Then, the vacuum Einstein equation is equivalent 1.8 to the 
following set of equations: 

Ao (4) 

V2AO = (VAo? - (VliJO)2 } 

V2liJo = 2(VAoHVliJo) 
Ao 

~ (lnfl) = A ~'P - A ~.z + liJ~.P -
liJ6.z - ~ (lM) l 

p ~ U~ P o~ 

~lnfl) = Ao.pAo.z + liJo.pliJo.z _ ~ (lM ) , p.z A~ p O.p 

(5) 

where V2 and V are the Laplacian and the gradient operators 
in three dimensional flat space. In looking for solutions, the 
difficult step is to obtain solutions of Eqs. (4). Then, Eqs. (3) 
determine A l' Eq. (2) determines A2, and Eqs. (5) determine 
fl. The gauge freedom associated with this formulation is the 
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addition of a constant to A 1/ Ao, the multiplication of n by a 
constant, the simultaneous multiplication of Ao and (do, also 
of p and z, by a constant, and the addition of a constant to z. 

The method 0/(1) constructs, completely algebraically, 
solutions (AD, wo) 0/ Eqs. (4). 

More precisely, three different algorithms have been 
proposed in (I) which construct, from any solution (Ao,(do) of 
Eqs. (4) a more general solution of the same equations with 
any finite number of additional parameters. All these algo
rithms are utilizations of the same basic idea for the perfor
mance of the exponentiation of the Kinnersley-Chitre3 

transformations and they are expected to be, in principle, 
equivalent. However, I feel that it is necessary to consider all 
three algorithms because it is not yet clear which algorithm 
minimizes the massive amount of computations involved or 
which one is more convenient for answering specific ques
tions about the solutions. 

The common first step in all three algorithms is the 
evaluation of the generating function G (s,t, p,z) of the origi
nal solution, where p and z are spacetime coordinates and s 
and t are two auxiliary variables. For most of the known 
stationary axisymmetric solutions G (s,t ) has already been 
evaluated. S,' Here we give G (s,t 1 for the general asymptoti
cally flat Weyl solution, i.e., the solution of Eqs. (4) with 
Wo = 0 and Ao = exp[28 (r,O)], where 

8(r,O)= ! mnr-n-Ipn(cosO), (6) 
n=O 

with Pn Legendre polynomials and mIt arbitrary constants. 
It has been obtained7 that 

G (s t) = _ ~. [I + s + t - 4stz ] 
, 2S(t) sS(t) + tS(s) 

X expfP (s) + P (t )], (7) 

where 

Set) = [(1 -2tz? +4t 2p 2J112 (8) 

and 

pet) =S(t)! f mn(2ty-kr-k-1Pk(cosO). (9) 
n=ok=o 

For P (t ) = P (s) = 0 Eq. (7) gives the generating function for 
the flat space. 

Having obtained G (s,t ), the instructions for computing 
the new solutions are the following: 

First Algorithm: 
A.I) Evaluate 

Gm,n(s,t) = - - - G(s,t), smt It ( a )m( a )n 
mIn! as at 

O<;'m,n<.N, (10) 

essentially the derivatives of G (s,t ). 
A.2) Consider the matrix 

N 

8ij - I a!PIG;,p _j(U'U) (11 ) 
P=j 

and evaluate its determinant.d A and the determinants r(A )k , 

O<.k<.N, of the matrices obtained by substituting the k th 
column of the matrix (11) by the column 
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([ ~ G;o(U,t)] ). 
at 1=0 

A.3) The Ernst potential of the new solution is given by 

E = io + io;o = AD + iwo 
. N 

+ _l_ L t a(P)Go,p_ k(O,U)r(A)k . 
.dA p=ok=O 

(12) 

a(p), O<.p<.N, and u are the additional parameters. 
Second Algorithm: 
B.I) Construct the new generating function 

G (s,t ) = G (s - I,t - 1) 

and evaluate 

Gmn (s,t ) = (- 1) m + n 8 mt n( ~ )m( ~ )n G (s,t ), 
mIn! as at 

(13) 

B.2) Consider the matrix 

~ ()-8ij- £".8 PG;,p_j(u,u) (14) 
p=j 

and evaluate its determinant.d B and the determinants F(B)k' 

O<.k<.N of the matrices obtained by substituting the k th col
umn of the matrix (14) by the column 

( I~i~ '" tG;o(U,t)) . 

B.3) The new solution is given by 

E=io + io;o 

=Ao + i(do 
. N 

+ -'- L i 8(P)GO,P_k( - OO,U)F(B)k . (15) 
.dB p=Ok=O 

Now, 8 (p), O<p<.N, and U are the additional parameters. 
Third Algorithm: 
C.l) Consider the matrix 

(16) 

(no summation) and evaluate its determinant.d c and the 
determinants r(C)k> 1 <.k<.N, of the matrices obtained by 
substituting the k th column of the matrix (16) by the column 

([ ~ G (U;,t)] ) . 
at 1=0 

C2) The new solution is given by 

- i N 
E=Ao+iwo+ - L P(P)G(O,up)F(C)P' 

.dcp=1 
(17) 

The additional parameters arep<p) and uP' 1 <.p<.N. Note 
that the third algorithm does not require the evaluation of 
the derivatives of the generating function, 

In the terminology of (I) all three algorithms express the 
application of the transformation T = 2.1:'= oad)k 122 to a 
known stationary axisymmetric solution. Different transfor
mations correspond to different choices of the parameters 
ak , In the first algorithm we apply the combined Nth rank 
transformation 2.;'= oA (PI, for which 

a k = i a(P)( k )uk 

p=o P 
(18) 
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and in the second we apply the transformation l:: ~ oD (p), 

for which 

Ok = f 8(P)( k + p - 1 )U - k. 

P~O P 
(19) 

In the third algorithm we apply repeated zero rank transfor
mations with different "u" parameters, i.e., we choose 

N 

Ok = I /3(P)u~ . (20) 
p~1 

G (s,t) = l:~~smt "NIT'rl is the generating function for the 
potentials NII';'I . 

3. MUL TIPOLE MOMENTS 

Our objective is to study the multipole moment struc
ture of the spacetime obtained by applying the algorithms 
outlined in the previous section to the most general asymp
totically flat Weyl metric. More precisely, we will determine 
the leading, i.e., the first nonvanishing, mass and angular 
momentum multipole moments of the new spactimes. Note 
that, aside from being the most interesting, the leading mul
tipole moments are the only ones which are unambiguously 
defined; higher multi pole moments depend on the choice of 
the origin. 

It has already been mentioned that the central idea is to 
perform the calculations and evaluate the new solution on 
the axisp = 0 of the azimuthal symmetry. In this case the 
computations simplify considerably. In fact, because the al
gorithms require the evaluation of the derivatives of the gen
erating function only with respect to the auxiliary variables s 
and t, the initial ingredient for all three algorithms is the 
generating function G (s,t,O,z) evaluated on the axis. For con
venience we will assume that s < 0 and t < 0 and we will con
sider the r = z> 0 part of the axis.9 For pedagogical reasons, 
we will proceed in two steps: first, we will apply the algo
rithms to a flat metric and introduce a finite number of addi
tional parameters. And second, by working in a particular 
gauge, we will easily generalize the results to the case when 
the original metric is the general Weyl metric. 

On the axis, S (s) = 1 - 2sr and the flat space generating 
function simplifies to 

G(s,t) = it/(2tr-l). (21) 

Then from Eq. (10) we obtain 

Go," (s,t) = i( - t )"(2r)" -I (2tr - 1) -" -I, n> 1 (22) 

and G m." (s,t ) = 0 V m > 1, V n. the application of the first 
algorithm then gives 

N 

L1A = 1 - I- a(P)Go,p(u,u), 
p~O 

r(A)k = - i8ok ' O<k<N, 

and finally the new solution 

where 

a'o,u N (2r)"-1 
A (r) = + I- a(")( -1)"u" . (23) 

2ur-1 "~I (2ur-l)"+1 
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The last expression can be further simplified. By rescaling 
the coordinates r_(2u) -Ir and redefining the parameters 
a( p)-u - I a( p) we obtain 

E= [1-iBA(r)]-I, 

where 

(24) 

BAr) = ~ + f (-I)"a(") r" -I (25) 
r - 1 " ~ I (r - I)" + I 

For application of the second algorithm we first obtain 
that on the axis 

G (s,t ) = - i(t - 2r) - I, 

and therefore 

(26) 

Go." (s,t) = - it "(t - 2z) - n -I, n> 1, (27) 

and 

Gm ," (s,t) = 0, Vm> 1, Vn. 

We obtain, as before, 
N _ 

L1B = 1 - I 8(P)Go,p(U,u), 
p~O 

rB(k) = - i8ok ' O<k<N, 

and after the rescalings r-2 I ur, 8( p)_u8( p) 

E = [1 - iB B (r)] - I, (28) 

where 

N (_ 1)"8(n) 
BB(r) = " (29) 

"~O (r _1)n+ I 

Finally, for the last algorithm, we have on the axis 

G (uuu) = iuj (2u j r - 1) -I, (30) 

from which we obtain 

N 

L1c = 1 - I/3(P)G(O,up), 
p~1 

r k = - i, l<k<N, 

and 

E=[I-iBdr)]-1 (31) 

with 

N /3 (")u
n 

Bdr) = I-
"~I 2ru" -1 

(32) 

Next we consider, on the axis, the generating function 
for the Weyl metric. For f) = 0 Eq. (9) gives 

x m 00 

/3 (t) = I --:S- - I m" (2t )" + I 

"~or" "~O 
= 8(r,O) - 8(1!2t,O), (33) 

where 8 (r,f) has been defined in Eq. (6). Hence we obtain 
that, on the axis, 

eZD(r,O) 

GWeyl (s,t) = GHat (s,t). 
eD( I/Zx,O)eD( 112/,0) 

(34) 

We can further simplify GWeyl (s,t ) by using the "gauge" free
dom of the generating functions, which arises from the fact 
that the potentials N 11'11 are defined via differential equa
tions. It is known5

,10 that the gauge freedom associated with 
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the generating function G (s,t ) of any static, axisymmetric so
lution is the multiplication of G (s,t ) by c(s)c(t ), where cis) is 
any smooth function of one variable (independent of the co
ordinates) for which c(O) = 1. Therefore, since 8 (1I15,0)/s ~ 0 

= 0, the denominator in Eq. (34) can be absorbed by such a 
gauge transformation. Hence we conclude that there exists a 
gauge for which, on the z> ° part of the axis, 

GWeyl (s,t) = /(r)GHat (s,t), 

where 

fer) = e2b
(r.O) = Ao(r,O) 

(35) 

(36) 

is the squared norm of the timelike Killing field evaluated on 
the axis. We adopt this gauge. Note, parenthetically, that 
this is precisely the gauge which was used in (I), Eq. (2.24) to 
make f3 (t ) well behaved for t-~ 00 • 

Because the generating functions for the Weyl and flat 
solutions differ only by a factor which is independent of sand 
t, it is very easy to write on the axis the solution obtained 
when the original metric is the Weyl instead of the flat met
ric. Indeed, one can immediately write the new Ernst poten
tials by changing the parametersa(p),/j (p),f3(p) into/(r)a(P), 
/(r)8 (P),f(r)f3 (p) respectively- i.e., change B x(r) to 
/(r)Bx(r), X =A,B,C-and simultaneously change the 
squared norm of the original solution from I toler). We 
obtain 

i/B E = / + --"----
I-i/B 

/-i/(/-I)B 
I-i/B 

(37) 

whereB (r) stands for B A' B B' or Bc ofEqs. (25), (29), and (32) 
respectively, depending on the particular algorithm which 
has been applied. In the expression (37),f(r) contains all the 
information about the Weyl solution which was used and 
B (r) contains the information of the transformations which 
were applied. 

We now study the multi pole moments of the solution 
(37). 

Recall I I that for stationary asymptotically flat space
times one defines the mass and the angular momentum mul
tipole moment potentials by 

A~ + w~ - I 
<PM = 4Ao ' 

(38) 

<PJ = ~. 
21.0 

The multipole moments of the spacetime are obtained in 
terms of the derivatives of the above potentials. Although 
higher muItipole moments are difficult to calculate, the lead
ing multipole moments are readily obtained as the coeffi
cients of the leading terms of the expansions of <PM and <PJ in 
powers of 1Ir. 

For the solution (37) we have (dropping the tildes) 

A _ /[1 +/(/_I)B2] 
0- 1 +FB2 ' (39) 

(40) 
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(/2 -1) +/3(/ -2)B2 
<P M = --"'--_--':"'....:...:0--'-''---'-:_ 

4/[1 +/(/_I)B2] 

B 
<PJ = 2[1 +/(/_I)B2] 

/ and B admit expansions of the form 

00 b 
B= L _n . 

n~ 1 ~ 

Asymptotic flatness requires that 

AD = 1 + : + 0 ( ~ ) , 

Wo= ~ + 0 (~). 

(41) 

(42) 

(43) 

(44) 

for constants m and a and it holds for b l = 0. (It turns out 
that even solutions with b l =1=0 can be transformed into as
ymptotically flat solutions by the application of a suitable 
Ehlers transformation,7 but we will not consider this case 
here.) Instead we will assume that 

Pn (1) /=1+ -+0 -, 
~ ~+l 

(45) 

bs (1) B=-+O -, 
r r+ 1 

Using Eqs. (41), (42), and (45) it is straightforward to obtain 
that 

Pn + 0 ( I ) 
2~ ~+I 

if n < 2s 

__ s_+O __ _b
2 (I) 

4rs rs+ 1 
if n>15 

<PM = (2pn - b/) + 0 (_1_) 
4~ ~+l 

if n = 2s and (46) 

bs 2=1=2mn 

if n = 2s and 

bs 2 = 2mn 

bs (I ) <PJ=-+O -. 2r r+ 1 
(47) 

Equations (46) and (47) determine the leading multipole mo
ments of the new solution. Observe that for the original Weyl 
metric <PM = Pn/2~ + 0 (r - n - 1). Therefore,for n < 2s all 
three algorithms preserve the leading mass multipole moment 
o/the original Weyl metric. In particular it could be argued 
that physically realistic solutions should possess a nonzero 
total mass, i.e., they would havepi =1=0. Hence, sinces>2, we 
conclude, as in (I), that the application of the algorithm does 
not change the mass. 
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4. CONSTRUCTION OF PRESCRIBED SOLUTIONS 

A. Specific leading multipole moments 

It might be desirable to construct the metric of a space
time representing a relativistically rotating star with prede
termined leading mass and angular momentum multi pole 
moments. With the analysis of the previous section this can 
now be readily achieved. Equations (46) and (47) can be used 
to obtain the requiredf(r) and B (r), which contain, respec
tively, all the information about the original Weyl metric 
and the choice of the parameters in the algorithms which 
construct such a metric. 

To determine the required Weyl metric is trivial; for 
f (r) to be of the form given by the first of Eqs. (45) one 
simply has to choose mn -1 = Pn/2 as the first nonvanishing 
parameter in the expression (6) for 8 (r,B). Hence, we will 
concentrate on the slightly more complicated issue of deter
mining the required transformations, namely, on how to 
choose the parameters a(nl, 8(n>, 13 (n) in B A (r), B B(r), Be(r) 
[Eqs. (25), (29), (32) respectively] such that they admit a 
power series expansion of the form b, r - S + 0 (r - S - 1), for 

s>2. For BB(r) this is immediate by the choice 8(n) = 0, 
O<;n<;s - 2, which actually reflects that the transformations 
D ( p) used in the second algorithm were constructed to gener
ate pure multipole moments. We proceed with the determi
nation of the parameters in BA and Be because such an ap
proach can be generally used to find additional 
transformations which generate pure multipole moments. 
To avoid massive calculations while presenting the idea we 
will consider a particular case, namely, the choice of the 
parameters in Eqs. (25) and (32) for which B A and Be are of 
the form bs/r + 0 (r- 6

). 

For BA we have to choose particular a(nl, 0<;n<;4, a(n) 

= 0 for n>5. By changing r-r + 1 (to simplify the calcula
tions) and requiring that the coefficients of the first four 
powers of 11 r vanish we obtain a( 0, = 0, 3a( 1, = a( 2, 

= a(3, = 3a(4,. Therefore, the required transformation, of 
the form (18), is 

a
k 

= ± a(p)( k )uk 

p=O P 

= ~;' ukk (k + 1)(k + 2)(k + 3) = a(4,(k; 3 )u\ 

i.e., a transformation ofthe form (19), used in the second 
algorithm. 

For Bdr) we again choosef3(p) = 0,p>6 while specify
ingf3(p) for 1 <;p<;5. By writing 

00 [N {3 (p) ] B (r) = ~ ~ r - n - 1 
e ~ ~ 2n + 1 n n=O p=1 Up 

(48) 

and requiring that the coefficients of the first four powers of 
1Ir vanish we now obtain the four linear equations 

5 L {3(n)U n -p = 0, 0<;p<;3, (49) 
n=l 

which constrain the coefficients. A particularly nice expres
sion is obtained by choosing Un = n u, 1 <; n <p and express
ing, using Eqs. (49), all 13 (n),s in terms of 13<1 '. We obtain 
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5 
a

k 
= L 13 (P)Up k 

p=1 

= E(511-4(2k + 3
) +6(3k + 3

) _4(4k + 3 ) + 5k + 3 ]u\ 

(50) 

for some constant E's,. 

In fact, proceeding by induction one can show that the 
transformations with 

ak =E(P+l)[ n~o (-1)"(~)(1 +nt+p-1]uk (51) 

generate a solution with (p + 1}--leading angular momen
tum multi pole moment. Of course, by making the choice 
(51) one works with repeated zero rank transformations 
with different u-parameters. 

B. The Geroch conjecture 

With the discovery of the infinite dimensional group of 
transformations which preserve the stationary axisymmetric 
equations, Geroch 1 conjectured that it should be possible to 
generate their general asymptotically flat solution by apply
ing the transformations to flat space. His evidence was main
ly the observation that the available transformations were 
sufficient to generate a solution with two infinite sets of arbi
trary parameters, representing the mass and the angular mo
mentum multipole moments. A stronger conjecture was 
made in (I). Since the algorithms generate solutions with any 
finite number of additional parameters, it was conjectured 
that, applied to the Weyl metric, they will provide the gener
al solution. This conjecture, together with an earlier proof by 
Kinnersley and Chitre4 that the Weyl solution can be gener
ated from the flat solution would settle completely Geroch's 
conjecture. 

Our aim here is to present overwhelming evidence that 
the conjecture in (I) is true; we will display the Weyl solution 
which should be used as the original solution and the par
ticular choice of the paremeters in the algorithms which gen
erate any given solution. Here are the instructions: For any 
given stationary, axisymmetric, asymptotically flat solution 
evaluate its norm and twist potential Ao(r) and (J)o(r) on the 
axis. Then evaluate 

(52) 

and 

B (r) = lillo [2ill~ + AoO + (1 - 4{J)6) 1/2) ]-1 . (53) 

Fromf(r) obtain 8 (r,O) and then 8 (r,B) by using Eqs. (36) 
and (6) respectively, to determine the Weyl solution. Finally, 
equate the above B (r) to B A' B B, or Beof Eqs. (25), (29), or 
(32) (depending on the algorithm which will be applied) to 
determine the parameters a( p), 8 (p) or 13 (p). 

The above expressions (52) and (53) have been obtained 
by solving 

E - f-if(f-l)B _ 1 +' 
- - /\'0 l{J)o 

l-ifB 

for f and B and choosing the solution which reduces to 
(J,B) = (Ao,O) for (J)o = O. Note that for an asymptotically 
flat solution (Ao,{J)o) the abovef(r) and B (r) have the "cor
rect" [cf. Eq. (45») asymptotic behavior. 

Basilis C. Xanthopoulos 1258 



                                                                                                                                    

We close the section with the remark that the present 
analysis does not prove the conjecture completely; it only 
determines the original metric and the required transforma
tions which will construct any solution provided that the 
conjecture is true. What is further required to complete the 
proof is a uniqueness proof for the solutions of the elliptic 
system (4) with initial data given on the axis and with asymp
totic behavior as in Eq. (44), i.e., the asymptotic behavior 
which guarantees asymptotic flatness. 

5. DISCUSSION 

It would appear from Eq. (20) that the application of 
the third algorithm to the general Weyl metric would pro
duce a metric with three infinite sets of independent param
eters !mi,fJ(J), U i Jr'= I Moreover, one could possibly consid
er further combinations of the different transformations, 
e.g., by choosing 

ak = f f a/ Pl
( k )U7, 

i=lp=O P 
(54) 

and introduce, seemingly, even more infinite sets of par am
eters. But these contradict the expectation (mainly based on 
physical intuition) that the general stationary axisymmetric 
asymptotically flat solution depends on precisely two infi
nite sets of parameters. The present analysis suggests that 
the apparent abundance of parameters might be superfluous. 
It turns out that it is possible to write an algorithm for the 
application of the transformations (54) and to perform the 
computations on the axis. The resulting solution, on the axis, 
depends exactly on two infinite sets of parameters. 

The determination of the original Weyl, needed to gen
erate a stationary metric, by Eq. (52) has the slightly unfor
tunate feature that! (r) depends, except on ,,1,0' on CUo as well. 
As a result, a stationary metric generalizing a given static 
metric is not obtained by applying the algorithms to this 
static metric. For instance, to generate the Kerr solution by 
using the present algorithms, the static solution needed is not 
the Schwarzschild solution but some other, rather compli-
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cated Weyl solution. The situation should be contrasted with 
the transformations used in Ref. (5) which generate the Kerr 
solution from the Schwarzschild solution. However, the nu
merous advantages of the present transformations certainly 
outweigh this deficiency. 

The idea of performing the computations on the axis 
might be useful in other studies as well, for instance, in the 
study of solutions of the Einstein-Maxwell equations. Pro
ceeding as in (I), it is possible to write algorithms for the 
generation of stationary axisymmetric solutions of the Ein
stein-Maxwell equations, but as far as I am aware nobody 
has studied them in any detail. An analysis for these algo
rithms similar to the analysis done here will reveal the re
quired transformations which generate solutions with any 
desired multi pole moment structure. 
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Expressions are developed which describe exactly the composite, nearest neighbor degeneracy 
specified by the three kinds of nearest neighbor pairs created when simple indistinguishable 
particles are distributed on a one-dimensional lattice space. 

PACS numbers: OS.20.Gg 

I. INTRODUCTION 

In the present paper we determine the composite, exact 
nearest neighbor degeneracy for the following situation: a 
one-dimensional lattice space which consists of N equivalent 
sites (each of which can accommodate one single simple par
ticle only) arranged in a linear array; q single, indistinguish
able particles each of which occupies a single lattice site; 
three kinds of nearest neighbor pairs, arising when the parti
cles are distributed on the space, (1) occupied nearest neigh
bor pairs [1-1 type], (2) mixed nearest neighbor pairs [0-1 
type] and (3) vacant nearest neighbor pairs [0-0 type]. 

Previous papers l
-

3 have dealt with a determination of 
the exact degeneracy of arrangements in those situations 
where one type of nearest neighbor pair is specified. The 
present paper seeks to extend those results to a determina
tion of the composite degeneracy of arrangements for which 
the numbers of occupied, mixed, and vacant nearest neigh
bor pairs are all prescribed. 

Within the constraints imposed by the nearest neighbor 
approximation, the most general expression for E;, the inter
action energy, is 

E; =nlIVII +nOIVOI +nooVoo' (1) 

where n II is the number of occupied nearest neighbor pairs 
on an array, nOI is the number of mixed (one site occupied 
and an adjacent site vacant) nearest neighbor pairs on an 
array, and noo is the number of vacant nearest neighbor pairs 
on an array; VII' V;1I' and V 00 are associated potential ener
gies of interaction, respectively. 

Clearly, the present notation, appropriate to the occu
pation of lattice sites, can be transformed readily to situa
tions involving the distributions of two kinds of dissimilar 
particles or any binary distributions of. for example, magnet
ic spins of sign + and -. 

The partition function associated with Eq. 1 is written 

L A [N. q. nil' nOI ' noo]exp[( - E;lkT)], (2) 

where A [N, q. n ll • nOI' non] is the degeneracy or multiplicity 
of those arrangements having a prescribed number of 1-1 
(occupied nearest neighbor) pairs and a prescribed number 
of 0-1 (mixed nearest neighbor) pairs and a prescribed num
ber of 0-0 (vacant nearest neighbor) pairs-when q indistin
guishable particles are distributed on the lattice space con
sisting of N equivalent sites. Here the sum is taken over all 

states specified by permissible valuesofn ll • nol , and noo. The 
present paper is concerned primarily with determining the 
exact composite nearest neighbor degeneracies for one-di
mensional lattice spaces. 

We first note here that the quantities nIl' nOlO noo are not 
independent but are related by the fact that their sum is the 
total number of nearest neighbor pairs which can exist on an 
array regardless of the number of particles present, i.e., 

N-l=n ll +nol +noo (3) 

There will be developed in the next section additional 
relationships between the five variables N, q. n ll , nOI' and 
n()(). 

II. DETERMINATION OF A[N, q. n", nOl, noo] 

To calculate A [N. q. nIl' nOI' noo]' we must consider the 
situations when nOI is even and when it is odd. 

A.nolodd 

If no I is odd, then one and only one end compartment is 
occupied (see Fig. 1). Assuming that the occupied end com
partment is on the right-hand side of lattice, we construct 
"units" which consist of one or more contiguous particles 
and the adjacent vacancy (or vacancies) to the left of the 
particle(s) which separate the particles of a "unit" from the 
particle(s) to their left. With each "unit," except for the one 
at the right hand side of the array, there are two nearest 
neighbor pairs of the 0-1 type; one at the right-hand end of 
the "unit" and one on the left. For the "unit" on the right
hand end of the space there is one mixed nearest neighbor 
pair. Thus, there must always be a total of [(nol + 1)/2] 
"units," regardless of the number of occupied or vacant sites. 

There are nIl occupied nearest neighbor pairs which 
can be distributed among the [nOl + 1)/2] "units." Ifwe con
sider the "units" as identical boxes into which we can distrib
ute the nIl identical nearest neighbor pairs with no restric-

FIG. I. In this figure nOI = 7 (denoted by x's), nIl = 3 (denoted by =), and 
n(X! = I (denoted by -). The compartment on the right-hand end is occu
pied while the left-hand compartment is vacant. There are four 
(not + 1)12 = 4 "units" (denoted by the dashed boxes). 
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tion as to the number of occupied nearest neighbor pairs in 
each box, then there are 

(
[(nO! + 1)12] + nl\ - 1) = ([(nO! - 1)12] + nl\) (4) 

nil nIl 
independent arrangements which can be created as the occu
pied paris are permuted among the boxes. 4 

By permuting the vacant nearest neighbor pairs among 
the "units," additional independent arrangements can be 
created without influencing the number of "units" or the 
distribution of the n II occupied nearest neighbor pairs with
in the "units." Again we consider [(nO! + 1)/2] "units" to be 
indistinguishable boxes into which we may place the noo in
distinguishable vacant nearest neighbor pairs with no con
straint as to the number of vacant nearest neighbor pairs 
which can be placed in each box. By so doing 

C(nol + 1)1:~ + noo - I) = ([(nol - ~~2J + noo) (5) 

independent arrangements can be created. 
Because the manipulations leading to Eqs. (4) and (5) 

represent statisticaI1y independent events, the total number 
of arrangements possible, when nO! is odd and the right-hand 
end compartment is occupied, is simply their product 

(
[(nol - 1)12] + nll)([(nOI - 1)l2J + noo). (6) 

nil noo 
A similar expression can be derived when nOI is odd and 

when the end compartment on the left-hand side is occupied. 
Because the occupation of the left-hand end compartment is 
statistically equivalent to the situation when the right-hand 
end compartment is occupied, A (N, q, nil' nol , noo), the total 
number of arrangements possible when nOI is odd, is just 
twice Eq. (6), i.e., 

A (N, q, n ll , nOI ' noo) 

= 2([(nol - 1)/2] + nll)([(nOI - 1)/2] + noo), nolodd. 
nIl nOO 

(7) 

B.no, even 

When nOI is even, two situations can arise: 
(a) the compartments on both ends of the array are emp

ty (see Fig. 2). 
(b) both ends compartments are occupied (see Fig. 3). 
For those arrangements described by (a), we create 

"units" which consist of a particle or group of contiguous 
particles and the vacancy or group of vacancies which sepa
rated the particle(s) of the "unit" from the particle(s) to the 
left (see Fig. 2). Thus on the array there are always [n 12J 
" . O( 

UnIts" (because each "unit" has two mixed nearest neigh-
bor pairs). 

The "units" may be considered to be identical boxes 
into which we may place the n II identical occupied nearest 
neighbor pairs to form 

Cno1 /2] + nil - I) = ([noI /2] + nil - I) 
nl\ [noI/2] - 1 

independent arrangements. 
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FIG. 2. In this figure nOI = 6 and both end compartments are empty, 
nIl = 3 (denoted by =), and noo = I (denoted by -). There are 3 "units" 
nol /2 = 3 (denoted by dashed lines). 

The noo vacant nearest neighbor pairs can be distributed 
among the [no/2] "units" and the vacancy or groups of con
tiguous vacancies at the right-hand end of the aray. Thus 
there are [noI/2] + 1 boxes into which the noo vacant nearest 
neighbor pairs may be placed; this can be done in 

enOl/~~ + noo) 

independent ways. 
ThusA (q, N, nIl' nol , noo), the total number of in de pen

dent arrangements possible when both end compartments 
are empty, is given by 

A (N, q, nil' nol , noo) 

(8) 

For situation (b) (Fig. 3) we form "units" which consist 
of a particle or group of contiguous particles and the adja
cent vacancy (or vacancies)just to the left of the particles; the 
"unit" on the left-hand end of the array needs no vacan
cy(ies) to separate it from the rest of the array. Because the 
particle or group of contiguous particles on each end of the 
array has only one mixed nearest neighbor pair associated 
with it, there are [(nol + 2)/2] "units." 

The n II occupied nearest neighbor pairs may be distrib-
uted among the [(nol + 2)12] boxes to form 

(
[(nol + 2)/2] + nll - 1) = ([noI/2] + nll) 

n'l nll 

_ ([noI/2] + nil) 
- !:Q.! 

2 
independent arrangements. 

Similarly, the noo vacant nearest neighbor pairs may be 
distributed among the [(nol + 2)12] boxes in 

(
[noI /2] + noo) = ([noI /2] + noo) 

noo nOl/2 
independent ways. 

Thus, when the compartments at both ends of the array 
are occupied, A (q, N, nIl> nol , noo) is given by 

A (N, q, n w nOI> noo) 

= ([no!/2] + nll )([nOI /2] + noo). (9) 
nIl noo 

Equations (7), (8), and (9) are, of course, subject to the 

FIG. 3. In this figure nOI = 6 and both end compartments are occupied, 
nIl = 2 (denoted by =), and noo = 3 (denoted by -). The number of 
"units" is 4, (nol + 2)12 (denoted by dashed boxes). 
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constraints imposed by Eq. (3); however, to express Eqs. (7), 
(8), and (9) in terms of Nand q we note that when nOI is odd 
(i.e., one and only one end compartment is occupied), then 
the number of mixed nearest neighbor pairs is related to N, q, 
nIl' and noo by the relationships 

2q - 1 = nOI + in II' 

2(N - q) - 1 = nOI + 2noo. 

(10) 

(11 ) 

These relationships can be seen from Fig. 4 in which 
[for Eq. (10)] lines are drawn from both sides of each com
partment which is occupied. An accounting of the lines leads 
to Eq. (10). Equation (11) may be derived in the same manner 
where the lines are drawn from both sides of each compart
ment which is vacent. 

In light of Eqs. (10) and (11), Eq. (7) becomes 

(
q-l)(N-q-l) A (N, q, nIl' noo) = 2 , nolodd. 

nil nOO 
When nOI is even and both end compartments are 

vacant, 

(12) 

2q = nOI + 2n ll , (13) 

2(N - q) - 2 = nOI + 2noo, 

so that Eq. (8) becomes 

(
q - 1)(N - q - 1) 

A (N, q, nil' nOD) = , 
nil noo 

(14) 

nOI even. (15) 

When nOI is even and both end compartments of the 
array are occupied, 

2q - 2 = nOI + 2n ll , 

2(N - q) = nOI + 2noo, 

then Eq. (9) may be written 

(
q - 1)(N - q - 1) 

A (q, N, nil' noo) = , 
nil nOO 

nOI even 

(16) 

(17) 

(18) 

Equations (12), (15), and (18) reflect the permutations of 
the total number of separations between the particles with 
those separations which are occupied nearest neighbor pairs 
and the permutation of the total number of separations be
tween the vacancies with those separations which are vacant 
nearest neighbor pairs. 

To determine, from Eqs. (12), (15), and(18),A (N,q, nIl)' 

the number of arrangements of q indistinguishable particles 
on a one-dimensional lattice of N equivalent sites which yield 
n II occupied nearest neighbor pairs, we sum over all possible 
values of noo. There are, however, only three possible values 
of nOD' This can be seen from the following considerations: 

For a fixed value of n II there are, on any single array, 
q - n II groups terminated at each end by a mixed nearest 
neighbor pair unless the group is at the end of the array. Thus 

x X X X X X X 

I fofof fofofof fof fol 
FIG. 4. Accounting for the number nearest neighbor pairs in terms of the 
number of occupied and vacant sites. There are three occupied nearest 
neighbor pairs ( = ); seven mixed nearest neighbor pairs; seven particles. 
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(19) 

This corresponds to the three cases discussed above: the one 
case when nOI is odd and the two cases when nOI is even. 

In the light ofEq. (3), Eq. (19) becomes 

(20) 

so that the three values of noo are contained in 

N - 2q + nil - 1 <noo<N - 2q + nIl + 1. (21) 

We note by the subtraction ofEq. (13) from Eq. (14) that the 
lower limit corresponds to the vacancy of the compartments 
at each end of the array; by the subtraction of Eq. (10) from 
Eq. (11), that is, noo = N - 2q + n II' means that nOI is odd 
and that one and only one end compartment is occupied; and 
by the subtraction ofEq. (16) from Eq. (17) we note that the 
upper limit is associated with nOI even and that the compart
ments at both ends are occupied. 

Thus 
N-2q+nl1+1 

A (N, q, nil) = :L, A (N, q, nIl' noo) 
nCKI=N-2q+nl,-1 

(
q - 1)[( N - q - 1) (N - q - 1) 

= nil q-nll-l +2 q-n ll 

( 
N - q - 1)] 

+ q- n l1+ 1 

= (q - 1)(N - q + 1), 
nil q-nll 

(22) 

a result previously reported. I In Eq. (22), we have assumed 
thatA (N, q, nll,noo) is given alternately by Eqs. (IS), (12), and 
(18). 

Similarly, A (N, q, non) is obtaining by summing A (N, q, 
n l" noo) over all values of n II' (2q - N + nOD - I<n ll <2q 
- N + nOO + 1), i.e., 

2q- N + "ou+ 1 

A (N, q, noo) = :L, A (N, q, nIl' noo) 
n I I + 2q - N + "III) - 1 

= (N - q - 1)( q + I ). 
noo W - q - noo 

(23) 

Again in Eq. (23),A (N, q, nIl' noo) is given alternately by Eqs. 
(12), (15), and (18). The result contained in Eq. (23) has been 
reported previously. I 

To determine the degeneracy of those arrangements 
containing a prescribed number of mixed nearest neighbor 
pairs we note from Eq. (12) that when nOI is odd, 

(
q - 1)( N - q - 1 ) 

A (N,q, nod = 2:L, W-I--
n" nil nIl nOI 

( q-l )(N-q-I) 
= 2 (nol _ 1)/2 (nol - 1)/2 

because, from Eq. (10), n II takes on only one value: 

nIl = q - [(nol + 1)/2). 

When nOI is even nIl can take on two values 
q - noJ2 - 1 and q - nol /2 so that 

R.B. McQuistan 

(24) 

(25) 
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(N - q - I)(q - I) 
A (N, q, not! = n

o
/2 _ 1 n

o
/2 

(
N - q - 1)( q - 1 ) 

+ nol /2 no/2 - 1 

[N-nol](N-q-I)( q-I ) 
= 2 nOI nol/2 - 1 nol/2 - 1 . 

(26) 

Equations (24) and (26) represent the exact degeneracy of 
those arrangements containing a prescribed number of 
mixed nearest neighbor pairs3 and as such it is to be com
pared with an approximate solution developed by Ising 
(1925) in his treatment of one-dimensional ferromagnetic 
phase transitions.5 

III. NORMALIZATION 

The zeroth moment of the statistics characterized by 
A [N, q, niP nol ' noo] is determined by summing the compos
ite degeneracy over all values of nil' nOI' and noo, i.e., 

(27) 

From Eqs. (3), (12), (IS), (18), (22), and (23) and the Vander
monde theorem6 we see that Eq. (27) reduces to 

q - I (q - I)(N - q + 1) (N'I 
n,~o nil q - nil = q) 

(28) 

or 

N-i- I( q+I )(N-q-I)=(N'I. (29) 
n,., = a N - q - noo noo q) 

Similarly, from Eqs. (24) and (26) we see that 

IV. FIRST MOMENT 

In this section we consider the mean values of the num
ber of nearest neighbor pairs, for random distributions. 

The mean value of n II and noo can be calculated using 
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the results of Eqs. (22) and (23), respectively, and have been 
reported previously. I The mean value of nOI can be deter
mined to be 

(nol ) = (J -IInol A (N, q, no.), 
q no, 

(3 I) 

where for odd and even values of nOI Eqs. (24) and (26) are 
utilized to express A (N, q, nOI) as nOI varies over its permissi
ble values. Thus 

(nOI ) =2("J-I{1 +(2)[ N~2] +(3{q~ I) 
x(N - ~ - I) + 4[ N ~ 4 ](N - f - I)(q ~ 1) 
+ 5( q ; 1)( N - ; - 1) + 6 [ N ~ 6 J 

x(N -; - I)(q; I) + ... J. (32) 

By grouping the first and second terms, the third and 
fourth terms, etc., we obtain 

(nOI ) = 2(J -I {(N - 1) + (N - I)(q ~ I)(N - f - I) 
+ (N _ 1)( q ; 1)( N - ; - 1) + ... } 

= 2(N -l)("J -I~e 7 I)(N -; -1) 
= 2(N _ I)(N'I - I( N - 2 ) = 2q(N - q) . (33) 

q} N-q-I N 
Thus, the maximum value of (nol)INis! and occurs at a 
lattice coverage of l' 

V,SUMMARY 

The exact degeneracy of those arrangements exhibiting 
prescribed numbers of occupied, mixed, and vacant nearest 
neighbor pairs has been determined. By the reduction of this 
degeneracy, the degeneracies of arrangements arising when 
only one kind of nearest neighbor is specified are also deter
mined exactly. 

'R. B. McQuistan, J. Math. Phys. 13,1317 (1972). 
'R. B. McQuistan, J. Math. Phys. 15, 1845 (1974). 
3R. B. McQuistan, Fibonacci 14, 353 (1976). 
4J. E. Mayer and M. G. Mayer, Statistical Mechanics (Wiley, New York, 
1959). 

'E. Ising, Z. Physik 31, 253 (1925). 
6J. Riordan, Combinational Identities (Wiley, New York, 1968). 
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Asymptotic decay of correlations in the spin-llsing model a) 
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We show that in the high-temperature region the spin-spin correlation function decays 
asymptotically like e - Kr /rb

, O<b."q(d - 1). 

PACS numbers: 05.50. + q, 75.1O.Hk 

Perhaps the simplest tenable, quantitative approxima
tion one can make to the two-point, spin-spin, correlation 
function is that of Ornstein and Zernike. 1 Their approxima
tion results, in general dimension,2 in the decay of the spin
spin correlation function like 

(1 ) 

We have been able to show that their simple approximation 
represents, at least for the spin-! Ising model, above the criti
cal temperature, the limit of what is possible. This behavior 
is known to be correct for the two-dimensional, nearest
neighbor Ising model from the exact solution.3 Also it is 
already known4 that the decay must be approximately expo
nential in this region 
We set 

(2) 

It has been proved, for sufficiently high temperatures5 and 
for R = IIRI12' large enough, that: 

G (R) a:e - RKIR)/R lid-Ii, (3) 

where R is the unit vector in the R direction. The mass gap 
K(R ) has a nontrivial but explicit dependence on the 
direction. 

It is therefore natural to postulate for the ferromagnetic 
spin-~, nearest neighbor, Ising model, that for REld and 
IIRII~ > R I' there exists ° <A _ <A +,K(R) > Oandb (R) such 
that: 

A 
e - RKIR ) e RKIR) 

---,-,-«CToCTR)<A+ " 
RbIR) RbIR) 

(4) 

Let us call 0 the direction along a given axis of the lattice. 
Under this hypothesis and either hypothesis: 

(Hd 
{K(O,) <K(R 1 
b(O)<b(R) 

(5) 

or 

(H2 ) G(R)<G(IIRlb 0, 0, ... 0). (6) 

We shall prove that 

O<b (0 )«d - 1)12. (7) 

Hypothesis (H2) seems to be likely and expresses the fact 
that spin-spin correlation function has to have its maximum 

alWork supported in part by the U.S. Department of Energy. 
DIOn leave from D.Ph.T., C. E. N. SacJay, B. P. 2, 91190 Gif-sur-Yvette, 

France. 

along the axis of the lattice when considered on a large 
sphere. An inequality of the same type but in the reverse 
direction has been obtained by Hegerfeldt6 

G(IIRIII' 0, O, ... O)<G(R). (8) 

We first prove that b (R »0. Since if = 1 we may write 

(CTu CTI3) = (CTu~CTI3»(CTuCTy)(CTyCTI3) (9) 

by Griffith's second inequality.7 Thus by the hypotheses of 
the theorem, and by taking the points a, 13, y in the same 
direction, R, and by choosing, 

R = la -131 = 21a - yl = 21Y -131, (10) 

we get 

(11 ) 

We have at once, when R-+oo that b (R »0. To prove that 
b (0 )«d - 1)12, choose a = (0,0, .. ·0) and 13 = (2R,0,0,. .. 0), 
R>R I • 

Then, setting for convenience K(O) = K and b (0) = b, 
we have 

e - 2KR 

A _ -b -b < (CToCT2R > < L (CTOCTy ) (CTy CT2R ) (12) 
2 R YEJi 

by Simon's inequaIity8 where the ball f!lJ must surround the 
origin. We choose for it the (d - I) hyperplane ,JY'd _ I' 
which bisects the line (a,I3). Using the hypothesis (HI)' we get 

and for hypothesis (H2 ) 

exp[ - 21IyI12K(Y)] 
IlyIWI)-) 

exp( - 2Klly112) 

IlylW 

< I (CTOCT j Iyl',) (CT·. ly,l , CT2R ) 

YE,f'd 1 

exp( - 2KllyI12) 

IlylW 
which leads in both cases to the same result: 

exp( - 2Klly112) 

IlylW 

( 13) 

(14) 

(IS) 
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Introducing a suitable system of coordinates in 
Zd- 1:::::;Jf'd_ I we get from (15) 

e lhR 2 +uo exp[ -2K(R2+p~ +"'+pLI)1/2] 
A_--<A +-" . 

2bRb L: [R2+p~+"'+P~_I]b 
Ip,.p .. _ .. p" ,J (16) 

L emma: Consider a function !(Pi + p~ + ... + P~-l)' positive 
and nonincreasing in p2 = pi + p~ + '" + p~ _ I , then the 
sum 

I =/(0), d= I, ( 17) 
I 

can be bounded by 

(
d - 1) (d - 1) (d - 1) 

Id< 0 Sd+ 1 Sd_I+'" k Sd_k 

(d - 1) (d - 1) + '" d - 2 Sz + d _ lSI' 

where 

f
+OO 

Sd = _ 00 /(pi + p~ + .. , + p;- ddpl .. ·dpd_1> 

SI =/(0). 

( 18) 

(19) 

(20) 

This inequality results from the following decomposition: 
~d being the sum over all sites ofj(PZ) in ld - I, we call ~~ the 
sum over all sites Off(p2) in Zd - I deprived of the sites which 
are on the (d - 1) hyperplanes of dimension (d - 2), forming 
the system of coordinates around the origin. Then it is clear 
that 

(
d - 1) , (d - 1) (d - 1) , I = I + I' +... I 

dOd I d-J k d-k 

(21) 

with 

I' =2:. (22) 
I I 

Now (18) is simply the consequence of the fact that if/(P2) is 
positive nonincreasing then 

I' <Sd' 
d 

Choosing for our lemma: 

j(pz) = exp[ _ 2K(R 2 + p2)1/2]1[R 2 + p2]b, 

we get immediately 

e- 2KR 
2 k=d-I(d - 1) 

A_ t;'"b<A + I k Sd_ k' 
2 R k=a 

where 

(23) 

(24) 

(25) 

J + 00 exp [ - 2K(R Z + pi + .,. + P7- II J /2 ] 
SI = dpI· .. dpl I 

-00 [R2+pi+"'+P~_IJb -

(26) 

1265 J. Math. Phys., Vol. 22, No.6, June 1981 

= 
1/- 11/2 

1T R I - I - 2b 

r( I ~ 1 ) 

1
00 exp( - 2KR Jl + x) (1- 3)/2 d X x X. 

a (1 +X)h 

In (27) set t = ~1 + x, then 
1/- 1)/2 

S = 1T R 1 - J - lb 

I r [(1- 1)/2] 

X 2 foc e - lKR't - 2h + I(t 2 - 1 jU - 3)/2dt. 

Finally by setting t = I + vl2KR in (28), we get 

1T1/- II/l (R)I/-ll/le-lKR I 
S= - --J(KR) 

I r[(/-l)12] K R2b b , 

with 

J~(KR ) = e - vVII- 31/1 1 + _v_ i "" ( ) -2b+ I 

a 2KR 

X 1+-- dv. 
(

V )11 - 3)/2 

4KR 

Therefore 

+(d-2)(d-l) ;( ~)J~(KR) 

(
d - 1) 1T1d-p- 11/2 

... + P r [(d - P - 1 )/2] 

( 
R)ld-P-II/2 

X -; J~-P(KR) + ... 

(27) 

(28) 

(29) 

(30) 

1Tld - 1)/2 ( R )Id - 1)12 } + - Jd(KR). (31) r [(d - 1 )12] K b 

Now for [-;;.2 and 2KR-;;, 1, we can bound J~(KR) by ft, 
because 

and 

1<1 + vI2KR<1 + v, 

1<1 + vI4KR<I + v, 

(
1 + _V_)I - 2b «I + v) with {b-;;,O, 

2KR v-;;,O, 

and for I> 1, 

1 + _v_ < ( 1 + v) 1(1- 3)/21. 
( )

(1- 3)/2 

4KR 

Therefore, 

11 = 100 

e - Vvl/- Wl( 1 + V)I + 1(/- 3)12ldv, 1-;;,2. 
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Finally, 

1 { ( R )1-2 1T ( R ) -3 <. Jib 1 + (d - 1) -;; J + (d - 2)(d - 1) 2 -;; J + '" 

{
d - I} rrld - p

-
I )/2 (R)ld- P-I)/2-d_ + ... + - J P 

P r [(d - p - 1 )/2] K 

+ ... + _ Jd . 
rrld - 1)12 ( R )Id - 1)12 _ } 

r [(d - 1)/2] K 
(36) 

If we letR-+oo in (36) and b > (d - 1)/2, we find a contradic
tion, because the left-hand side of (36) is a finite strictly posi
tive number, from our assumptions, while the right hand 
side will tend to zero. 

A further improvement to this result has been suggested 
by A. Sokal.9 The fundamental hypothesis (4) can be weak
ened to the following: 

There exists K> 0 and b such that for each E> 0, there 
exists R1(E) < 00 and 0 <A_(E), A+(E) < 00'" such that 

A _(E) exp( - K\a - 13\) <. (a a ) <.A (E) exp( - K\a - 13\) 
la - rw+<' n P + la - 13l b - E 

(4') 

wherever la - 131 >R1(E). 
This change is possible because the proofs ultimately 

become just linear inequalities for b, e.g., Eqs. (9), (10), and 
(11) with R-+oo, lead to 2b (i) + 2E>b (i) - E implies 
b (i » - 3E. Since this result holds forE > 0, wehaveb (i »0. 
Likewise for the other bound. 
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This argument allows one to extend our proof to the 
case where logarithmic corrections to the leading behavior 
exist. Equation (4') says briefly that 

log [exp(Kla - (31)(an a p )] 
lim 

In -PI~oo logla - 131 

exists and equals b (i ). 
We point our that our result is a very delicate one in

volving corrections to an exponential. In particular, it does 
not hold for the two-dimensional Ising model below Tc 
where the effective b (for the Ursell function rather than just 
the two-spin correlation function) is3 2 rather than !. Also in 
the two-dimensional model of McCoy and Perk, 10 where a 
single b, independent of direction is inappropriate, in one 
direction a b of 3/2 is found. 
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It is known that there may exist one or more Hilbert space structures corresponding to an 
indefinite metric quantum field theory. In this paper we prove that: (a) the existence of a Hilbert 
space structure is not needed in the construction of the physical Hilbert space(s); (b) different 
choices of the Hilbert space structure lead to physical Hilbert spaces isomorphic to that (those) 
mentioned in (a). Consequently, the physical content ofthe theory can be read off directly from the 
Wightman functions-in perfect analogy with the positive metric case. In this light we discuss a 
weaker form of the Wightman-Garding-Strocchi axioms for indefinite metric quantum field 
theories. 

PACS numbers: IUO.Cd 

1. FORMULATION OF THE PROBLEM AND MAIN 
RESULTS 

Then there exist: 
(i) a linear space D with a nondegenerate sequilinear 

form (.,.); 
(ii) a vector nED with (n,n ) = I; 

In order to fix the problem we are concerned with in this 
paper, let us recall the generalization of Wightman's recon
struction theorem for standard (positive metric) quantum 
field theories (QFT's) (see, e.g., Ref. I) to indefinite metric 
QFT'S.2-4 For simplicity we consider an Hermitian scalar 
field, the generalization to muIticomponent and non-Hermi
tian fields being straightforward. Wightman's functions are 
supposed to be distributions over an arbitrary nuclear test 
function space5 denoted by ff(R4). In order to incorporate 
into the discussion some physically interesting cases, 6 ff(R4) 
is not necessarily assumed to be the Schwartz space Y(R4). 
In analogy with Ref. 7, we introduce the algebraff defined 
as the topological direct sum 

(iii) a representationf~4> (f) of the algebraffby linear 
and, in general, unbounded operators (called field operators) 
on D, such that for any cp,r/JED, 

where ffo = C and for n> I, ffn = ff(R 4n). Any element 
f6./V' can be represented as a sequence (fo,f" ... ,fn ,. .. ), where 
foEC,fn 6./V'(R 4n) for n> I, and all but finitely many fn 's are 
zero. Multiplication by scalars and addition in ff are de
fined componentwise. The product of two elements and an 
involution * are introduced respectively by 

n 

(fXg)n(x"""xn) = L fdx" .. ·,xk)gn - dXk+ p ... ,xn), 
k~O 

(f*)n(x,,. .. ,xn) = fn(x" ... ,xn)· 

In this way ff becomes a topological *-algebra and the fol
lowing reconstruction theorem holds8

: 

Theorem l:(a) Let! Wn IWnS-ff'(R4n ), n = 1,2, ... } be a 
sequence of translationally invariant distributions, i.e., for 
anyaER\ 

Wn(x, + a, ... ,xn + a) = wn(x" ... ,xn), 

satisfying the Hermiticity condition 

(I) 

(2) 

(cp,4> (f)l/!) = (4) (f*)cp,l/!) 

andh(cp,4> (f)I/!) is continuous. Moreover, 

D = [4> (f)n I f6./V'J, 

and, for allfn 6./V'(R 4n), 

f d4xJ"·.d4xnfn(x"· .. ,xn)wn(x,, ... ,xn) = (n,4> (fn)n ); 

(iv) a representation Uta) of the translation group, de
fined on D, under which the fields are covariant and such 
that for any cp,r/JED, for any aER4, 

(U(a)cp,U(a)l/!) = (cp,l/!) (3) 

and 

U(a)f}=n. (4) 

Thequadruple {D,(.,.),U(a),4> I is determined by I Wn I satis
fying (I) and (2) up to isomorphism. 

(b) If in addition to (I) and (2) the distributions [wn J 
obey the requirements 

Wn(X" ... ,Xi,xi+' , ... ,xn) 

= Wn (x" ... ,xi + 1 ,xu .. ·,xn), n = 2,3,. .. , 

for (Xi - Xi + 1) spacelike, and 

(5) 

wn(Ax", .. ,Axn) = wn(x" ... ,xn) (6) 

for any A belonging to the proper orthochronous Lorentz 
group L 1+ ' then: 

(i) [4> (f),4> (g)] = 0 

for all/. g6./V'(R4) and such that suppfand suppg are space
like separated; 
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(ii) there exists a representation U (A ) of L 1+ leaving!1 
and (',) invariant and transforming the fields covariantly. 

The proof of the above theorem, whenff(R4) = Y(R4), 
is given in Refs. 9 and 10 and can be generalized in a straight
forward way to the case of arbitrary nuclear test function 
spaces. The reason why we have separated the formulation 
of Theorem 1 into two parts is that there exist physically 
important cases in which requirements (5) and (6) are violat
ed. It has been proven II for example, that Lorentz invariance 
is spontaneously broken in any local formulation of the four
dimensional quantum electrodynamics (QED4)' On the oth
er hand, all two-dimensional models involving at the same 
time the free massless scalar field and its dual field violate 
condition (5) (see, e.g., Ref. 12). 

Now we are in the position to formulate the problems 
dealt with in the present paper. Comparing the Wightman
Garding-Strocchi (WGS) axioms2

-4 to the quadruple 
I D,( .,.}, U(a),<P J reconstructed from I Wn J ,one immediately 
realizes that the Hilbert space structure present in the former 
case is missing in I D,(.,}, U(a),<P 1. Following Refs. 9 and 
10, we adopt 

Definition 1: The Hilbert space I JiY',h') I is called a Hil
bert Space Structure (HSS) for ID,C·), U(a),<P 1 if and only 
if: 

(i) D is dense in I JiY',(-,.)J; 
(ii) there exists a bounded, self-adjoint operator 'TI (called 

metric operator) on JiY', such that for any cp, t/JED 
(cp,1f;> = (cp,'TI1f;). 

From point (ii) it follows that, for all cp,t/JED, 

I (cp,1f;) I.;.; 1'TIlllcpllll1f;11 

(7) 

(8) 

(I 'TI I is the norm of the metric operator), i.e., the form (.,.) is 
jointly continuous with respect to the Hilbert topology in
duced on D. Moreover, because of (i), the form (',) can be 
extended by continuity to the whole JiY'. For all cp,1f;EiJr the 
extention, denoted by { " J has the property: 

(9) 

In the case ff(R4) = Y(R4) necessary and sufficient 
conditions are known9

•
IO for the existence of the HSS. When 

such a structure is fixed, one enters in the framework of the 
WGS axioms, where in particular the notion of physical 
space is defined. But two important and deeply connected 
problems remain unsolved: 

P,) how to define the physical space( s) corresponding to 
[D,(.,), U(a),cf> 1 when it admits no HSS; 

P 2) even when {D, (")' U (a), cf> I admits a HSS, this is in 
general not unique and the question arises whether different 
HSS's lead to inequivalent physical Hilbert spaces, or, in 
other words, have different physical content. 

The above problems being specific for indefinite metric 
QFT's, 13 are far from being only of academic interest. In
deed, as it has been demonstrated in Ref. 4, local gauge the
ories, which currently dominate our understanding of ele
mentary particle physics, are indefinite metric QFT's. 

The main results of our analysis concerning P I and P 2 

are: 
(I) the existence of a HSS is not needed for the construc-
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tion of the physical Hilbert space(s). The latter can be con
structed only in terms of (D,(.,.), U(a),<P l; 

(2) different HSS's lead to physical Hilbert spaces iso
morphic to that (those) mentioned in (1). 

On the basis of the above results it seems to us reason
able to weaken the WGS axioms in such a way that no use is 
made of the notion ofHSS. We do not disregard the possibil
ity, if it exists, of introducing a HSS: a suitable choice of a 
HSS gives in some cases technical advantages which can be 
used, being now sure that the physical content of the theory 
is not affected by the arbitrarity of the choice. In this light 
one can give an unambiguous meaning to the Fock represen
tation offree indefinite metric quantum fields,3.14 which al
ways admit 15 a HSS. 

2. CONSTRUCTION OF PHYSICAL HILBERT SPACES 

The outline of this section is the following. We start 
with the case in which the quadruple [D,( .,.}, U(a),<P ] ob· 
tained from [w n ] admits a HSS [,W,(.,.)]. Then, adopting 
the definition of physical Hilbert space of Ref. 4, we show 
that the latter can be constructed only in terms of [D, (.,), 
U(a),<P J, namely without making use of [cW',(·,·ll. 

Definition 2: Let c;Y' be a subspace of jy' with the fol
lowing properties: 

(i) ! cp,cp 1;;;.0 for any cpEcW"; (10) 
(ii) there exists a dense (in the Hilbert space topology) 

subspace D' CW', such that D' CD, 

nED', (11 ) 

and 

U(a)D'CD' for any aER4; (12) 
(iii) JY" is maximal (with respect to inclusion) in JY' with 

the above properties, i.e., if ~W'b cJY' satisfies (i), (ii), and 
JY" C JY'b, then JY'b = JY". 

Remarks: (a) We are not going to discuss now the phys
ical motivations for conditions (i)-(iii) in Definition 2. We 
only anticipate that the assumption of the existence of the 
subspace D' dense in jy" and D' CD is sufficient to ensure 
that the action of a certain class of operators including U (a) 
(the algebra.w below), can be lifted on a domain dense in the 
physical Hilbert space corresponding to JiY". Note that in 
general the subspace D' obeying (ii) may not be unique. 

(b) From the requirement of maximality of ,}Y" in ,W', it 
follows that cW" is closed in the Hilbert space topology. More 
precisely one has jy" = W, where the bar means the closure 
with respect to (.,.J. 

(c) The following observation is useful for some consid· 
erations. Let! D :, IOEA 1 be the set of all subspaces of cW" 
satisfying the requirements of point (ii) of Definition 2. As 
can be easily verified, {D ~ IOEA] is a partially ordered set 
with respect to inclusion. Moreover, any linearly ordered 
subset of \ D ~ \oEA 1 has an upper bound. Therefore, by 
Zorn's lemma, ! D ~ \oEA I contains a maximal element (in 
,.w"). 

Let us consider furthermore the subspaces 

7('" = I cpEcW"' \ I cp,cp l = 0], 

D" = \cpED'I(cp,cp) =0\ 

Mihail Mintchev and Emilio d'Emilio 
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and the factor spaces JY'I JY" and D 'I D II equipped respec
tively with the sesquilinear forms 

(ct'I,ttl)1 = [tpl,¢'d, 

(ip2'¢2b = (tp2,¢'2)' 

(14) 

(15) 

Here tpl' ¢'I and tp2, ¢'2 are arbitrary representatives of the 
equivalence classes tpl,¢'I&l't"'1 JY" and iP2'¢2ED' I D II re
spectively. One easily verifies that the forms (.,.);, i = 1,2, are 
well-defined scalar products, so that [JY' I JYII, (.,.) I J and 
[D 'I D II ,(.,. b J are pre-Hilbert spaces. According to Ref. 4 we 
adopt the following: 

Definition 3. The physical space JYphyS (JY') corre
sponding to JY' is given by: 

JYphys ($"') = JY'/JY", (16) 

where the bar means the completion with respect to (-,')1' 
Remarks: (a) The space JY'/JY" is complete in the to

pology induced by (-,.) [see Remark (b) after Definition 2]. 
The space (16) is in general larger than JY'I JY" and is the 
one appropriate to the physical interpretation of the theory. 

(b) The unicity of the subspace JY' with the properties 
(i)-(iii) of Definition 2, is not ensured by the WGS axioms. It 
may happen that there exist many such subspaces. In this 
case one can construct as many physical Hilbert spaces. 

The reason why we consider the space [D 'ID "'("'hl 
parallel to [JY'I JY" '(")11 becomes transparent when one 
tries to lift on JYphys (JY') the action ofa certain type ofoper
ators defined on D. Note that the operators Uta) and (/J, we 
are mainly interested in, are defined on D, and being in gen
eral unbounded, cannot be extended by continuity on JY, 
and correspondingly on JY' and JYphys (JY'). 

So let .r:1' be the set of operators defined on D such that 
for any AE.r:1': 

D'Cfi)A t , 

AD'CD', AtD'CD', 

(17) 

(18) 

where A t is the (.,) -adjoint of A and fi) A t is its domain of 
definition. Because of the fact that (.,) is nondegenerate on 
D, the operator A t is well defined on 

,0:' A t = !¢,EDI3xED:(¢,,Atp) = (X,tp)VtpEDI. (19) 

The elements of d form an algebra, which, owing to (3) and 
(12), contains the operators ! U(a)laEIR41. We stress that d is 
defined without making use of any HSS, differently from 
Refs. 3 and 16, where in the particular case ofQED4 an 
analog of .rI, called the gauge invariant algebra/ is 
discussed. 

For any AE.r:1' let us consider the operator A defined on 
D 'I D II in the following way: 

~=~, ~ 
where tp is an arbitrary representative of the class iPED' I D ". 
As a consequence of conditions (17) and (18), all elements of 
theset~ = [AIAEdl are well defined operators onD 'ID ", 
and ~ is an algebra such that the mapping 

h:Ar--+A, (21) 

defined by Eq. (20), is a *-homomorphism, i.e., 
~ - -

alAI + a~2 = alAI + a~2' 
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~ 

At=A*, VAE.W, 

where * means (·,b-conjugation. 
A central role in what follows is played by 
Lemma 1: There exists a dense subspace g; C ,}Y' 1/7('" 

isomorphic to D ' I D II • 

Proof Consider the mapping 

E:D'ID 1-+,r'/7t'" (22) 

defined by 
E:tj5i----+~, 

where tp is an arbitrary representative of iP and therefore 
belongs to D', i.e., to JY". E is well defined because if 
tpl,tp2Eip, then tpl - tpzED II er" and therefore ct'l = ct'2' 
Moreover, E is obviously linear and has the property 

(ipl,ip2lz = (E (ipd,E (ipz)) I 

for any ip l,ip2ED' I D ". Indeed 

(ipl,ip2h = (tpl,tp2) = !tpl,tp21 

= ('121''122)1 = (E(ipd,E(ip2))I' 

(23) 

Onedefinesfi) = E (D 'I D "). From(23)and thelinearityofE, 
it follows that E is in vertible. Therefore, E is an isomorphism 
between the pre-Hilbert spaces D 'I D II and f:!), and what re
mains to be proved is that g; is dense in ,r'l/j't". Let 
tpEJY" I JY'" and tpEJY" be an arbitrary representative of tp. 
Then, since D' is dense in )Y", there exists a sequence -

! tp" I CD' such that 

lim Iltp - tp" II = o. 

Consider furthermore the sequence! '1211 I C g;. Using the es
timates (9) and (10) one obtains 

lim 11'1211 - '12llf = lim! tp" - tp,tp" - tp I 
n----.oo 

= lim I [tp" - tp,tp" - tp II 

which completes the proof of the lemma. 
N ow one performs the lifting on !:!) of the action of .w, 

defining for any AE.W, 

"! = Eoh (A joE - '. (24) 

From Lemma 1 and (24) it follows that the elements of 
.r:1' = ! AI AEd I form an algebra of operators with common 
domain -fi) dense inJY" I)Y'" , and therefore, in JV'rhys PV"). 

Moreover the following theorem holds 

Theorem 2: Let D' I D II be the completion of D 'I D II 

with resoect to h·lz. Then the Hilbert spaces ,JY'phys (,7(') and 
D 'I D II are isomorphic and the isomorphism preserves the 
action of the algebras .w and .;;t. 

Proof Owing to th~ fact that fi) is dense in JY' phys PY"), 
the isomorphism 

'8:D 'ID "-+7t'phYs (,JY") 

is defined by extending the isomorphism 

E:D 'ID "-+9 CJY'phys()Y") 
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by continuity. 'f! preserves the action of:;; and .s£ by 
construction. r-...I 

As a consequence of Theorem 2 one has that the struc-

tures (,57'phys pY"),.r! l, ( D' I D " , .;; 1 are equivalent. As 

( D' I D" , .;; 1 is built up only in terms of the quadruple 
(D,(.,.). U(a),iP J, without making use of the HSS (dY,(.,.)), 
the dependence of (dV'phys (dY"), .r! 1 on I ,W",( ".)j is ficti
tious. Therefore the information about the physical Hilbert 
spacers) of any indefinite metric QFT is contained in 
(D, (.,), U(a),iP 1 or equivalently, because of Theorem 1, in 
(w" ). 

3. A WEAKER FORM OF THE WGS AXIOMS 

In this section we discuss a slight modification (see also 
Ref. 17) of the WGS axioms2

-4 without making use of the 
notion of HSS. For the reasons mentioned after Theorem 1 
we adopt also a weaker form of the requirements of covar
iance, locality, and spectral condition. This weaker form, 
however, still ensure the physical interpretation of the 
theory. 

So by indefinite metric QFT we mean a structure obey
ing the following axioms (A's) and definitions. 

AI: There exists a set of operator valued distributions 
liP; (/)1 jE./V'(lR4), i = 1 , ... ,n J called fields and defined ona 
complex linear space D, equipped with a nondegenerate ses
quilinear form (.,). The polynomial algebra generated by 
(iP;(/)ljE.,"'(lR4), i = 1, ... ,n J will be denoted by Y. 

A): There exists a representation I U(a)laElR4) of the 
translation group, defined on D and a vector nED with the 
properties: 

(i) (U(a)rp,U(a)if;) = (rp,if;) for anyrp,if;ED for any aElR4; 
(ii) (n,n ) = 1 and U (a)n = n; 
(iii) the fields iP; transform covariantly under U (a). 
A,: There exists a subspace D' CD such that: 
(i) (rp,rp) >0 for any rpED '; 
(ii) nED' and U(a)D' CD' for any aElR4; 
(iii) D' is maximal (with respect to inclusion) in D with 

the above properties, i.e., if Db, satisfies A 3(i)-(ii) and 
DCDb, then Db =D'. 

Definition 4: The physical Hilbert space corresponding 
to D ' is defined by 

,W'phys(D ') = D 'ID" . 

Here D " = I rpED 'I (rp,rp ) = 0 1 and the completion is taken 
with respect to the scalar product (·,lz defined for any 
ip,ifjED 'ID" by (ip,ifjb ~ (rp,if;) , rp and if; being arbitrary re
presentatives of ip and if;. 

Definition 5: Let .,W' be the algebra of operators defined 
on D and such that VAE.W': 

AD'CD',AtD'CD' 

(t means (.,)-conjugation). By :;; one denotes the algebra of 
operators defined on D' / D "c dYphys (D ') as follows: 

- r-...I 
Aip = Arp. 

A4: For any iP, tf/E.7 n.W', 

[iP (/), tf/ (g)] = 0 for any f, gE."V(lR4
), 
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such that suppj and suppg are spacelike separated. 
As: The operators! U (a) laElR4 l have the following spec

tral representation: 

f 
3 

U(a)= e;padf1(p), pa=poao - ;':f/;a;, 

where the spectral measure f1( p) has its support in the clo
sure of the future light cone V+ = ! pElR4

1 pp>O, Po>O). 
Remarks: (a) The Axioms AI-As are formulated in 

terms of [D,( ',), U (a),iP; J which are the basic objects one 
obtains from I w" I by Theorem 1, i.e., like in the positive 
metric case there is a direct relationship between the recon
struction theorem and the axioms. 

(b) The unicity of D 'is not ensured by the requirements 
A3{i)-(iii), in complete analogy with the case with jf" in the 
framework of the WGS axioms [see Remark (b) after Defini
tion 3]. 

(c) One can verify that Axioms AI-As are fulfilled by 
some exactly soluble models (see Ref. 15). 

(d) Formulations ofQED4 which do not assume the 
existence of a HSS are discussed in Refs. 18-20. 

In what follows we fix I D, (.,), U (a),iP; J satisfying axi
oms AI-As' Let us denote furthermore by j) = I D bl{3E~ 1 
the set of all subspaces of D with the properties A,(i)-(iii). 
Then one has 

Lemma 2: Assume that ID,(.,), U(a),iP; I admitsaHSS 
and let [,;Y',( ... ) J be such an arbitrary structure. Then: (a) For 

any {3E~, the subspace ,W'b = Db, where the bar means the 
(·,·)-closure, obeys the requirements of Definition 2. 

(b) For any dY' cdV' with the properties quoted in Defi
nition 2, there exists a subspaceD 'c 7(" satisfying condition 
(ii) of Definition 2, and such that D 'EM. 

Proof (a) One immediately verifies that Jf;'=D;; satis
fies (i) and (ii) of Definition 2. Concerning the maximality of 
;Y;3 in ,;.1', suppose that there exists .W' obeying (i)-(iii) of 
Definition 2 and such that 

-y, ~ 'l:/-' 
J( {3 'i= ef( • (25) 

Consider furthermore the subspace D ' C 7(", D' = .)7'" 

which exists according to point (ii) of Definition 2 and has 
the properties listed therein. One has the following 
possibilities: 

(I)D;3cb D '; 

(2) Db =>D '; 

(3) neither (1) nor (2) are fulfilled. 

The cases (1) and (2) are in contradiction with the maximality 
of D;3 in D [see A,(iii)] and (25) respectively. Since D (3 C W' 
and D' cW" in the case (3), one has that Y(D ;,uD ') (.f 
means linear envelope) obeys A,(i)-(ii), but 
,Y'(D ;3uD ')12D b, which is in contradiction with the maxi
mality of D b. 

(b) Let us fix an arbitrary subspace jf" c5f satisfying 
the requirements of Definition 2 and let the corresponding 
subspace D' [see Definition 2(ii)] be maximal in ,ff". Such a 
choice for D' is possible according to Remark (c) after Defini
tion 2. We shall provethatD 'ed]. IndeedD' obeys A,(i)-(ii) 
and therefore there exists {3oE~ such that D 'c D ;3,,' Suppose 
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that 

D'rf-D' ~ /30' (26) 

and consider dreo - D eo' where the bar means the (-,.)-clo
sure. Then drpo satisfies (i)-(iii) of Definition 2 [see the proof 
of point (a) of this lemma) and dr' Cdre". If we assume that 
]t" = Yr'''.' we get a contradiction with (26) and the maxi
mality of D' indr'. Therefore, dr' cj;,drpo ' which on theoth
er hand is in contradiction with the maximality of dr' in dr. 
Therefore, D = D eo E!!iJ . 

Lemma 2 clarifies the relationship between the WGS 
axioms and A I-A5. Indeed one has 

Corollary 1: In the case when f D,( .,>, U(a),l/>; J can be 
given a HSS (JY,(·,)!, the Axioms AI-A5 are equivalent to 
the WGS axioms, formulated in terms of ! dr,(·,) j. 

Finally the answer to the question posed by Problem P 2 

(see Sec. 1) is given by the following corollary, being a conse
quence of Theorem 2 and Lemma 2(b). 

Corollary 2:Let !D,(.,.), U(a),l/>; j admit at least one 
HSS. Then for any element of the family of physical Hilbert 
spaces obtained by both: 

(i) possible different choices of dr' for a given HSS, and 
(ii) varying the HSS corresponding to ! D, (.,), 

U (a),l/>; !, there is an isomorphic representative in the family 

(27) 

where the bar means the completion with respect to h·b (see 
Definition 4). 

Since all elements of the family (27) are constructed 
only in terms of (D,( ")' U(a),l/>; J, they are independent of 
the choice of a HSS. Moreover, the family (27) represents a 
complete classification of the physical Hilbert spaces corre
sponding to the indefinite metric QFT defined by ! D, (.,), 
U (a), l/>; j or, equivalently (Theorem 1), by (w n j. 
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Both quantum and classical sine-Gordon fields can be built out of the fundamental free neutral 
massive excitations, which quantally obey the Bose-Einstein statistics. At the roots of the "boson
fermion reciprocity" invented by Coleman, lies the spin ~ approximation of the underlying Bose 
system. By generalizing the coherent state methods to incorporate non-Fock quantum structures 
and to give account of the so-called boson transformation theory, we construct the carrier Hilbert 
space ,}y'so for quantum soliton operators. The -li~O limit of state expectation values of these 
operators among pure coherent-like states in ,}y'SG reproduces the classical sine-Gordon field. 
The related (classical and quantum) spin! xyz Heisenberg model field is built out of the 
fundamental sine-Gordon excitations, and hence can be consistently defined on the appropriate 
subset of the quantum soliton Hilbert space ,jyxyz' A correct classical limit is here shown to arise 
for the Heisenberg system: phase manifolds of the classical Heisenberg and sine-Gordon systems 
cannot be then viewed independently as a consequence of the quantum relation. 

PACS numbers: 11.10.Lm, 03.70. + k, l1.lO.Qr 

1. A NONSINGULAR BOSON TRANSFORMATION 

Suppose we have been given a classical scalar field, 
which obeys a differential equation: 

A (J)tP = F(tP) A (J) = - V2 + J2/Jx~ + m2
, 

(1.1) 

and let <p(x), 1T(X) be the initial (time t = 0) data specifying an 
arbitrary free-field solution tPo(x,t) = tPo(X,t,<p,1T) of (1.1). By 
using the Yang-Feldman relation 

t/J(x,t) = tPo(x,t) + A (J) -I F(x,t,tPo), (1.2) 

we find that tP(x,t) is uniquely specified by fixing the initial 
free data 

tP(x1t) = tP(X,t,<p,1T) 

= tPo(X,t,<p,1T) + A (J) -I F(X,t,<p,1T). (1.3) 

Whenever the data <p,1T specify the conventional Fourier 
transformable plane wave solution tPo, we denote 
tPo = tPin = tPO (<Pin ,1Tin ), called the in-field associated with tP· 

Let us now consider a quantum scalar (Heisenberg) 
field ¢ satisfying an equation analogous to (1.1) 

A (J)¢(x) = F(x,¢) x = (x,t) 
(1.4) 

¢(x) = ¢o(x) + A (J) -I F(x,¢o), 

where we at once choose ¢o(x) = ¢in (x), with ~in (x),17'in (x) 
satisfying the (equal time) commutation relations 

[cPin (x),17'in (y)] _ = o(x - y)i-li. (1.5) 

Hence 

¢(x) = ¢in (x) + A (J) -I F(X,cPin ,17'in ), (1.6) 

which is understood as an equality among the matrix ele
ments of the operators, calculated between the in-field (Fock 

"'Main ideas of the paper are taken from my University of Alberta preprint 
under the title "On quantum solitons and their classical relatives." 

hlPermanent address. 

space!) vectors. An expressions of'~ in terms of cPin ,17'in we 
call a dynamical map. 1-7 Armed with the plane wave quan
tum data cPin ,17'in obeying (1.5), we are able to construct these 
free (in) field states, which are generated from the vacuum by 
a classical current, the familiar coherent states 

1<p,1T) = 1''1'.'' 10) 

= exp(i/-li) f d 3X [1T(X)cPin (x) - <p (x)17'in (x)) 10). (1.7) 

Here an exponent can always be rewritten in terms of the 
canonical pair (no transition to momentum space) a"'(x), 
a(x) as - (a,a"') + (a,a), where the complex valued func
tion a(x) is subject to the square integrability condition 

(a,a) = f d 3X a(x)a(x) = IIal1 2 < 00, 

with a(x) = [<p(x) + i1T(X)]!-liV2. Then 

l' 'P~;'cPin (x) 1''1'. " = cPin (x) + <p (x), 

l' 'P.;'17'il1 (x) 1''1','" = 17'in (x) + 1T(X), 

so that 

(01 l' '1'--''; ¢(x) 1''1','' 10) = (<p,1TI¢(x) 1 <p,1T) 

(1.8) 

(1.9) 

= (OltP(X,cPin + <p,17'in + 1T)IO), (1.10) 

and hence a c-number field tP",.,,(x) can be associated with 
¢(x) according to 

(OI¢"",,(x)IO) = (01 l' ;,,; ¢(x) 1''1'. " 10) = tP"",,(x). (1.11) 

Because of(1.5), ¢",.rr(x) can always be rearranged to a nor
mal ordered form plus terms following from the contrac
tions of the in-fields during the ordering procedure. These 
last, by virtue of (1.5) are proportional to -Ii, and hence, we 
can consider 

lim tP'P,rr(x) = lim [(OI:¢'P,,,(x):IO) + o (-Ii)] 
Ii .() Ii--.o 

= (OI:¢'1'.,,(x):IO) =¢J(X,t,<P,1T), (1.12) 
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and quite analogously (notice that all ¢<P.1T(X) do commute 
among themselves under the sign :.: of the normal ordering) 

m F<p.rr(x) = lim (OIF<p.".(x)IO) 
--0 Ii-->O 

= lim [(01 :F(x'¢<p.1T):IO) + 0 (~] 
Ii-->O 

= F(x,t,tjJ (rp,1T» = F(X,rp,1T). (1.13) 

So that, after taking the fI-D limit of the Fock vacuum ex
pectation value of (1.4), we have transformed a quantum 
field equation into a corresponding classical Euler one. Ev
erything is true under the assumption that the fz-o limit 
exists at all, 

lim (OIA (8)¢<p.,,(x)10) = A (8) lim (OI¢<p.".(x)IO) 
Ii-.o Ii--.o 

= A (J)tjJ (X,rp,1T) = lim (0 I F<p.". (x) I ) = F(x,tjJ) 
1i-->O 

='?A (J)ifJ (x) = F(x,tjJ). (1.14) 

Let us recall that in the above, it was crucial to choose 
the classical data rp,1T which are consistent with the square 
integrability condition (1.8). However such data do not at all 
exhaust the set of those allowed by the classical Euler equa
tion (1.14). Hence it becomes of interest to establish whether 
such, say singular, data can be used (and in what sense) to 
generate operators of the form ¢<P.".(x), and are consistent 
with the formula (1.14). The mapping (1.9) we call a nonsin
gular boson transformation. 

2. A SINGULAR BOSON TRANSFORMATION 

A nonsingular boson transformation maps a Fock 
space vector into a Fock space vector again, i.e., a vacuum 
10) into a coherent state Irp,1T), and this last can obviously be 
mapped into another coherent state, say Irpl,1T') by a unitary 
transformation: T<p""" T;'; Irp,1T) = Irpl,1T/). 

In the above the square integrability condition (1.8) ac
counts for these classical data which are consistent with the 
unitarity requirement T ;,; = T:.". and thus a good behav
ior at space infinity of the boson transformation parameters 
rp,1T guarantees that T<p.". is a nonsingular mapping. 

To introduce a singular boson transformation, and to 
understand its meaning in the quantum theory (with the 
I + 1 dimensional sine-Gordon perspective in mind) let us 
restrict the space dimensionality to one, and cover lR 1 by a 
countable sequence! LI k J k =. o. ± I .... of the noninteresting, 
semi-open intervals each one with length (lattice spacing) F 
small enough. Let us introduce 

at = (lIVF) IXk(X)a*(x) dx, 

(2.1) 

ak = (lIVF) IXk(X)a(x) dx, 

where X k (x) = i) ;~!: is a characteristic function of the set 
Ll k • For any function A (x) on lR 1 we shall also introduce a 
sequence 1,1, = (lIr)fX,(x)A (x) dx].=o.± I .... approximat
ing A (x) in the sense of A (x)~ ~,A,X,(x). Now let a sequence 
I a" ,at I k . O. l' I .... generate a Fock representation ofthe CCR 
algebra 

1273 J. Math. Phys., Vol. 22, No.6, June 1981 

[apa/J_ =8ij' [aj,aj ]_ =0, ajIO)=O'o'p (2.2) 

whose carrier (Fock) Hilbert space we designate IDPS (10», 
according to the direct product convention.8-13 

For each fixed value ofj = 0, ± 1,. .. a unitary 
transformation 

T; = exp(Ajat - ~a) 

(TA) -la*TA = a* + X 
j J J J J 

(2.3) 

(2.4) 

and under the condition l~jAj 12 < 00, a global mapping 

TA = I}T; = exp [ t(Ajat - ~a)] (2.5) 

exists and is unitary. Moreover the previously considered 
tcp.". (formally) emerges here as a continuum limit (F ---+0) of 
T),. 

Let h be a Hilbert space for an elementary quantum 
system, and let a*,a be the associated raising and lowering 
operators. Then the direct product construction leads to the 
direct product space ,57" = II/, hj where hj = h'o'j and the 

representation t at,aj"W'lj ~ O.:i 1 .... is infinitely reducible. 
Recall that the generating vector 10) for the (Fock) irreduci
bility sector IDPS (10») reads lIt (eot, where eoEh is the 
ground state of an elementary system. One easily finds that 
in the case ~j IAj 12 < 00, we get 

T), 10) = IIT; II "(eO)k = II"(heo)k: 
j k k 

II "(IA k ») = 1,1 )EIDPS(IO»), (2.6) 
k 

where for each k = 0, ± 1, .. · h 31Ak) is a coherent state: 
alA k) = A k 1,1 k ) specified by a parameter A k' It proves that 
the choice of any iII-behaving at ± 00 boson transformation 
parameter i (x) = (1Iv'2)[rp(x) + i1T(X)) results in the failure 
of the ~j IAj 12 < 00 condition ~nd hence the nonexistence of 
the global mapping operator T). . This is just the singular case 
of interest for us. 

Assume the series ~j IAj 12 to diverge, and let us consider 
the vector 1,1 )E./7" given by 

(2.7) 

which by construction is unitarily inequivalent to 10), and 
hence orthogonal to it. As a consequence, 1,1 ) generates a new 
irreducibility sector 

IOPS( 1,1 ») = ./Y~ cW' (2.8) 

for the representation I ai,a, L _ O. I I .... of the CCR algebra 
in ./Y. The representation is obvio~sly a non-Fock one. 

Assume now a quantum operator F = F (a* ,a) 
= F(<PiQ ffin ) to map [A ) into a vector from IDPS ([A ) )(oth

erwise F 1,1 ) would be orthogonal to 1,1) ). Then 

(A [F(a*,a)[A ) = (O[F(a* + X,a + ,1)10) 

= (OIF(<Pin + rp,ffin + 1T)10) = (OIF" 10). (2.9) 

and the boson transformation is realized for each <P t or iT~' 
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factor appearing in the explicit expression for F. Notice that 
the discretization can be immediately removed by taking a 
continuum limit r ~. 

A transformation 

R'I'.7r:F(tPin,itin~F(tPin + ({J,itin + 1T), (2.10) 

with ({J,1Tviolating the condition IIA 112 < 00, we call a singular 
boson transformation. In this way, we have proved that a 
singular boson transformation necessarily induces a transi
tion to a (different from the Fock one) irreducibility sector 
for the representation I tPin, itin I of the CCR algebra in ,;y. 

It is useful to know whether the two vectors la) and 
I y), constructed according to (2. 71-(2.~) are unitarily inequi
valent, i.e., whether a mapping: FA -Fa is singular or not. 
For this purpose let us restrict considerations to a single 
quantum degree of freedom in the discretized (2.4) case. 
Namely, we have 

10 ) = eo, la) = Ta 10} = TaT y-Ily) = Tayly), (2.11) 

with 

Ta = exp(aa - aa*) 

= exp(la[2/2)exp(aa)exp( - aa*) 

= exp( - laI 2/2)exp( - aa*)exp(aa), (2.12) 

and T; I = T _ y so that, by using the Baker-Hausdorff for
mula, we get 

t T; I = exp(aa - aa*)exp( - ya + ya*) 

= exp[(a - y)a - (a - y)a*]exp(ay - aYH 

= exp[(a - y)a]exp[(y - a)a*] 

xexp[(1/2)(laI 2 + lyl2 - 2ay)] (2.13) 

i.e., 

(2.14) 

It proves that a necessary condition for the global map
ping TI k T ~y to be nonsingular, is 

whose continuum limit is simply 

f d 3X la(x) - y(xW = ! f d 3X I [({J" (x) - ({Jy(xjf 

+ [1T,,(X)- 1Ty (X)rJ < 00. 

(2.15) 

(2.16) 

In this limit a direct product TI;" becomes a continuous di
rect product. In that case only, a transition from Iy) to la) 
can be realized by a unitary transformation, within the same 
irreducibility sector ID,rS (la»), say. Otherwise quantum op
erators Fa (({Jin itin ),Fy(({Jin itin ) are associated with different 
(non-Fock) irreducibility ,W'" , d¥'y respectively in ,r, be
cause we have 

Ilak - Yk 12_co:::::?<yla}_0, (2.17) 
k 

i.e., an orthogonality property holds true for la), Iy> if a 
function (a - y)(x) is not square integrable. 

3. SINE-GORDON SOLITONS AND THE BOSON 
TRANSFORMATION PARAMETERS 

A. Let us consider a classical sine-Gordon system in 
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1 +1 dimensions l4 .1 5 

.Y(x,t) = (1/2) [~if; - if;tP + 2m2(1 - cosif;) ](x,t), 
(3.1) 

a2if; = m2sinif;, a2 = a~ - a;, 

where Ii = c = 1. The classical particle spectrum of (3.1) is 
well known to consist of the three kinds of elementary excita
tions: a fundamental neutral particle with mass m, a charged 
particle with mass 8m, and a neutral particle with mass vary
ing within an interval [0, 16m]. Except for fundamental par
ticles, which can be identified through their counterpart to 
the total energy-momentum ofthe field only, the remaining 
two arise in the large time asymptotics of the so-called soli
ton solutions of the sine-Gordon equation, which we intro
duce via the formula 

if;N(X,t) = arccosll - (2/m2)(a~ - if;)lnfN(x,t) J, 
fN(x,t) = det(M;), i,j = l,2, ... ,N (3.2) 

Mij = [2/(a; +aj)]cosh[(O; + OJ)/2]. 

The parameters aj are allowed to be complex valued, 
provided that for each complex a; in the sequence I al, .. "aN J 

there appears an associated aj with the property aj = a~, a; 
being real otherwise. The additional restrictions on a j are as 
follows: 

aj =/-aj , i=/-j, 

la; 12 = (l - v;)/(l + V;), Iv; I < 1. 

Moreover, if a j is real, a corresponding OJ is given by 

OJ = ± my;(x - v;t) + D; = OJ (x,t ), 

(3.3) 

(3.4) 

where sgn(a j ) is chosen to coincide with the sign appearing 
in the expression for OJ> and J1 = (1 - v;) -I. 

If a j is complex and then accompanied by aj = a~ in the 
parametric sequence I a j J, = I ... .,N' then we have 

OJ = OJ = ° (a) = OR + iO j 

= (my/jal)[aR (x + vt) + iaj(vx + t)] + D, (3.5) 

where D = Dj = DR + iDJ is a complex phase, while a = a j 

= aR + ia/, Dj = Dr 
One can easily verify that expO; (x,t): = Aj(X,t) with 0; 

given by either (3.4) or (3.5), is a solution of the free-field 
equation 

a2A (x,t) = m2A (x,t), a2 = a~ - a;. (3.6) 

Real solutions (not plane waves in general!) of(3.6) we iden
tify with the mass m fundamental neutral fields associated 
with the sine-Gordon system. Notice that having A com
plex, we have also i, and then !(A + i) is the underlying 
mass m field. 

Recall that to each real a j there corresponds a one-soli
ton solution, while to each complex pair a j = aj there corre
sponds a bound (bion, breather) solution, both in the large 
time asymptotics OftPN(X,t) = if;N(al, ... ,aN,x,t). By looking 
at (3.2), and doing some algebra (with care however, as one 
must interchange infinite summations) one easily finds that 
after expanding tPN(X,t) with respect to exp( ± () factors, 
for each 0i a corresponding exp( - OJ) factor disappears, 
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and hence the following formal power series expansion is 
valid for the classical N-soliton field 

1/JN(x,r) = ! ... ! 1/Jn, ... n'exp(n/)I)···exp(nNON) 
n. =0 n,=O 

~ ~.I,n,.··n'1 n ( ) 1 n,( ) = L.. •.• L..'f' /1.1' X,t "·/1.N x,t , (3.7) 

with OJ = OJ(x,t) fori = 1,2, ... ,Nand 1/Jn, ... n, being theN-fold 
tensor coefficient, in which there are absorbed all the m, a j 
dependent factors arising in the course of calculations, and 
1/Jj (x,t ) = HA j (x,t) + Xj (x,t)] satisfies (3.6). 

B. We are now at the point, in which considerations of 
the previous sections can be taken into account. Let ~in (x,t ) 
be the quantum in-field (i.e., plane wave) solution of the 
equation 

(a2 
- m2)~in (x,t ) = o. (3.8) 

Let us furthermore consider the set of operator functional 
power series of the form 

~(x,t) = 1/J(X,t,cPin ,ffin ), 

F(X,t,cPin ,ffin ) = F(x,t), 
(3.9) 

where cPin (x), ffin (x) are the initial quantum data for ~in (x,t) 

[cPin(X),ffin(Y)]- =iM(x-y). (3.10) 

We replace them by operators 

a*(x) = (l/V2)[ cPin (x) - iffin (x)], 
(3.11) 

a(x) = (lIV2)[cPin (x) + iffin (x)], 

which after the smearing operation (2.1) define a reducible in 
the direct product space JY representation of the CCR 
algebra 

[as,a,] _ = 0 = [a:,a~] _ . 

We say that an operator ~(x,t) = 1/J(a* ,a,x,t ) satisfies the 
quantum sine-Gordon equation with the operator-valued 
sourceF (x,t) = F(a* ,a,x,t ) ifand only ifan operator identity 

a 2~(X,t ) = F (X,t ) (3.12) 

holds true in the sense 

(Ola 2~(X,t )10) = a 2(01~(x,t )10) = (OIF(x,t )10), (3.13) 

lim a2(01~(x,t )10) = lim(OIF(x,t )10) 
Ii ..() Ii~..o 

(3.14) 

where 10) stands for the Fock vacuum for [cPin ,ffin J 
= [a* ,a J. It means that each particular solution ¢ (x,t) of 
(3.1) should arise as a vacuum expection value in the tree 
approximation of some corresponding quantum operator 
~",(x,t) 

¢(x,t) = lim (OI~",(x,t)IO). 
Ii--..o 

(3.15) 

C. Because on the quantum level we deal with a single 
fundamental mass m "meson" in-field ~in (x,t), one easily 
finds by comparison with Secs. 1 and 2 that a sufficient con-
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dition for ~ '" (x,t ) to generate power series expansions of the 
form (3.7), (3.9) in the sense of(3.13), (3.14) is the identity 

~'" (x,t) = t/J(X,(,cPin + f{I,ffin + 1T): = t/J(x,t,a* + X,a + A ), 
(3.16) 

i.e., 

(3.17) 

which is a straightforward (albeit formal) generalization of 
the discrete procedures of Sec. 2. 

Under an additional assumption that the whole classi
cal N-soliton sector, N fixed, can be generated [via (3.12)
(3.17)] by using a single quantum field denoted ~N(X,t), the 
conditions (3.16), (3.17) are replaced by 

(3.18) 

with 
N X> = L expOj = AN' (3.19) 

;= 1 

An operator ~N(X,t) we call aquantum N-soliton opera
tor. Its domain in JY, i.e., the N-soliton sector in the state 
space, will be established below. 

Recall that to have a comparison with arguments of 
Sec. 2, one should replace continuous translations X (x), A (x) 
by the approximating sequences [Xj,A.j L= o. ± 1.;2 ..... But 
first, one should notice that f{I(x), 7T(x) arise as the initial clas
sical data for the free field solution of ( a 2 - m2)t/J(x,t) = 0 of 
the form 

N _ 

r/JN(X,t) = I HAj(x,t) + Aj(X,t)]. (3.20) 
i= 1 

The consistency of the choice (3.20) of the boson trans
formation parameter was analytically checked in a slightly 
different framework in Ref. 5, see, e.g., also Ref. 3, for 1- and 
2-solitons. An explicit form of the expansion coefficients 
1/Jn''''n, can easily be found for these particular fields. 

D. In this way we have demonstrated that both quan
tum and classical soliton fields, can in principle be built out 
of the fundamental free neutral mass m excitations. Hence 
the three types of basic sine-Gordon excitations are only 
outwardly independent: All of them can be reduced to exhib
it a more fundamental mass m neutral free field structure. 
This concept lies at the foundation of our studies of the Bose 
-+ Fermi metamorphosis in the whole series of papers 16-20 

among which Ref. 20 is devoted to the study of spin! ap
proximation of the sine-Gordon system, and explanation of 
its relation to the spin! xyz Heisenberg and Thirring models. 

4. COHERENTLIKE DOMAINS FOR QUANTUM SOLITON 
OPERATORS 

~ A. The time evolution ofa quantum operator ~",(x,O) 
-+r/J", (x,t) must be consistent with the "classical limit" for
mula (3.15). Hence for a concrete N-soliton solution of(3.1), 
we can rewrite (3.15), as 

(4.1) 
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where IlP,1T,t) differs from IlP,1T) through replacing the initial 
data lP,1T by the "time dependent" ones according to 

N 

AN =AN(x,t) = I expO;(x,t). (4.2) 
;= 1 

0; (x,t ) is fixed by specifying the 2N parameters 
!q,~ J = !a., ... ,aN,D., ... ,DN J according to (3.2)-(3.5). Notice 
that the whole time dependence giving rise to a correct clas
sical result, can be absorbed in the state vectors. 

Ifwe look at the differenceAN(x,t) - AN (x,O) = f(x,t) 
we see at once thatf(x,t) is not a square integrable function 
on H· for t #0, hence (see, e.g., Sec. 2) for neither instant of 
time t #0, is a quantum state IlP,1T,t) unitarily equivalent to 
IlP,1T).2.-23 They both belong to the different (orthogonal) 
irreducibility sectors lOPS (llP,1T» and lOPS (llP,1T,t », 
respectively. 

On the other hand, one finds immediately that a time 
development of 0; (x) into O;(x,t) simply results in the time 
dependent phase shift of 0; (x), which can thus be completely 
absorbed in the time dependent phase parameter 

D;--+D, + D;(t )==XJ;-O;(x,t) = Oi(X) + D;(t). (4.3) 

Consequently 

exp[O;(x,t)] = exp[O;(x,t) + D;(t)]. (4.4) 

Because for a fixed choice of soliton parameters 
!a., ... ,aN J the phases !D1, ... ,DN 1 are still completely arbi
trary, we have found that the quantum N-soliton time 
development 

(4.5) 

can be described by giving a time dependent trajectory in the 
set of initial data 

l/J;(x,a,D) = X;(X)-I/J;(X,t) = l/J;(x,a,D'), (4.6) 

D' = D + D(t). 

Hence for a given N-soliton solutiontPN(x,t) of(3.1) we have 

IlP,1T,t) = IlP,1T,q,Dj) = IlP,1T,q,~') (4.7) 

at a fixed instant of time t, with q = ! a., ... ,aN J so that 

(ip,1TI¢N(X,t)lip,1T) = (ip ',1T'I¢N(X)llP ',1T') (4.8) 

aU fixed, and lOPS (\ip,1T»), lOPS (lip' ,1T'») being orthogo
nal. In the way we have replaced a ti!De development prob
lem for a quantum soliton operator I/J(x,t ) by a transition 
through an infinity of unitarily inequivalent and non-Fock 
representations of the in-field canonical algebra. Each irre
ducible representation exists in its own lOPS (lip,1T,q,~»), 
where the ~ parametrization amounts to a time develop
ment, see, e.g., also Ref. 22. 

Because for a fixed classical N-soliton ifJ N(X,q,Q) the soli
ton data a remain unchanged during the time evolution, it is 
convenie~t to collect all possible choices of ~ 's for quantum 
solitons, by taking a direct integral. 

L .. Jd,u(DI, ... ,o.", )IOPS(\ip,1T,q,Q»): 

= OPS(\ip,1T,q»), 

where (i) the measure d,u(~) equals do 1 .. ·doN if all a;J 

(4.9) 

= I,2, ... ,N are real, (ii) if there is any conjugate pair a; = at 
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in the set! a., ... ,aN J the integral f.., f.., dDt dOj should be 
replaced by f f .., D(D; - Dj·) dDt dDj , where the integration is 
carried out over a complex plane. 

In the new Hilbert space (nonseparable) OPS(lq», a 
time evolution of the quantum operator ¢.p (x,t), ifJ = tP (q) 
can be unitarily implemented. 

B. In the above by using the notation OPS(lq», we have 
explictly indicated that all entering boson transformation 
parameters are considered at a fixed choice of the sequence 
q = {a., ... ,aN J. However we are allowed to vary the param-
eters !a), ... ,aN J at a fixed value of N, within the variability 
interval (0,00) 31a; I and under the demand that a; #aj for 
i # j which is a fundamental restriction used in producing 
any solution (3.2) of the classical sine-Gordon equation. 
While varying q's at N fixed, we are still within a classical N

soliton sector, while quantally we go through mutually or
thogonal Hilbert spaces. Notice that states Iq,Q), Iq',~) are 
always orthogonal, despite how close two sets 
q = {a), ... ,aN j,q' = {q; , ... ,a~ 1 of soliton parameters are. In 
this connection see e.g. (3.4) and (3.5) and note that neither 
function of the form 

fA),' (x) = exp(mAx) - exp(mA 'x) (4.10) 

is square integrable on the real line H·, when A #,1 '. As a 
consequence, each classical N-soliton sector gives rise to a 
quantum soliton sector consisting of the infinite family of 
mutually inequivalent and non-Fock irreducibility domains 
IOPS(lq,Q» for the in-field algebra, each one being specified 
by giving the values of parameAters q and DJ such that for all 
underlying Iq,~), limk...o (q,Q ItPN(X,t )lq,Q) = tPN(X,t). 

Let us now call a direct integral 

L da OPS(la» = $") (4.11) 

a quantum one-soliton sector for the sine-Gordon system. 
Here laIE(O,oo) and both I-solitons and l-antisolitons are 
included. The Hilbert space is by construction nonseparable, 
and the time evolution of quantum one-soliton is unitarily 
implemented in it. Let us consider a function 

{
I a. #a 2, (4.12) 

c(a.,a2) = 0 otherwise, 

and then introduce a double direct integral 

h;: = Lf da. da2 ~(a),a2)OPS(la),a2»' 
and the accompanying complex direct integral 

h ~ = Lf da. da2 D(a. - a!)c(a.,a2)OPS(la.,a2»' 

(4.13) 

la.I,la2 IE(0,00). (4.14) 

The integral (4.13) gives acount of the asymptotically de
composable classicaI2-solutions, while (4.14) gives account 
of the bound solitions (bions, breathers). Thec(a.,a2) factor 
in (4.13) is necessary to exclude the real coinciding param
eters. The direct integral 

h; ffJh~ =$"2 (4.15) 

we call a quantum 2-soliton sector of the sine-Gordon 
system. 
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For any N> 2, a classical soliton solution can arise for a 
number r = maxI r<N /2, r = 1,2,3,.·· J ofbion constituents. 

Therefore, a general quantum N-soliton sector of the sine
Gordon system reads as follows 

{[I da l ···1 daN] E9 {~I da l ••• [If da; da) 8(a; - at)]···ldaN} 

E9 {22 I f da l ••• [ f fda; da)8(a; - at)]···[f f dak da,8(ak - ar)] .. J daN} 
(IJI (k.ll '" '" '" q, 

E9 ••• E9 {I I··· I f da l ••• [ f fda, da)8(a; - at)] 
('JI (k.ll (m,nl ffi ffi 

... [ If dak da, 8(ak - ar )] ... [ If dam da n 8(am - a:) ]"'I daN} [€2(a l , .. ,aN)DPS(la l ,··,aN)] = ,'7/N' (4.16) 

where the maximal number of double direct integrals in the 
N-fold one equals an integer max {r<N /2 J and each double 
integral is carried over the complex area fa, I, laj IE(O, (0), 
while all single ones are carried over a real open interval 
la; IE(O, (0). 

C. Let us emphasize once more that the factor 
c(a \> •••• a N) gives account of the specifics for classical soli
tons "exclusion principle" by virture of which neither pa
rameter in the sequence {al, ... ,aN J can coincide with any 
other?4 

By taking a direct sum 

(4.17) 

we get a particular subspace cW'SG ccW' of the Bose in-field 
dirl!ct product space cW', which includes all possible quan
tum soliton sectors for the sine-Gordon system. cW'SG we call 
a quantum soliton Hilbert space for the sine-Gordon system 
in 1 + 1 dimensions. For other approaches to the sectorial 
structures associated with nonlinear field equations see 
Refs. 25-27, 

5. RELATION TO THE SPIN l xyz HEISENBERG MODEL 

A, The spin ~ xyz Heisenberg chain arises naturally in 
the so-calledzo spin! approximation of the sine-Gordon sys
tem [in the case of the lattice quantization of (3.1), under an 
assumption of the in-field structure of all the field operators], 
Strictly speaking the Heisenberg chain Hamiltonian re
places the nearest neighbor coupling (gradient) term in the 
sine-Gordon chain Hamiltonian. The basic assumption was 
that all lattice field operators can be expressed in terms of the 
single-site generators {a~ ,a, J s ~ 0, ± I,'" of the CCR algebra 
in the direct product space JY' constructed for a linear chain 
of quantum pendula, We identify these generators with the 
in-field ones introduced in the previous sections. 

Recall that JY' = ns®(h), and the spin! approximation 
appears by projecting on the lowest two energy levels of each 
single site (sth) Schroedinger problem in the linear chain 

®.,+ = P,a':Ps' ~J,~ = P,asPs' 

P, = :exp( - a~as): + a'::exp( - a':as):a" (5,1) 

h311/J)= Ifklk)-PII/J)= 
k=O 
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The projection operation can be equivalently described 
by a simultaneously fulfilled sequence of single-site 
constraints: 

(5.2) 

iis =a':as, iislk)s =klk)s· 

Then the lattice sine-Gordon Hamiltonian 

H = I{ [r. + 2m2(1 - COSlPJ] - (tPs - tPs+ I ?/c 
s 

(5.3) 

if supplemented by the constraints (5.2) plus the periodic 
boundary conditions,20 converts into 

p~Vs.s+IP=P(H- ~Hs)P=Hxyz = - f/aS~S~+I' 
(5.4) 

with P = nsps and Hxyz denoting the spin! xyz Heisenberg 
model Hamiltonian. The coupling constants! Ja ! a ~ 1.2,.~ rely 
here on the explicit a': ,as dependence of the quantum lattice 
field~, = tP,(a*,a) entering the gradient term, see Ref. 20, 

All the spin! generators! S, J s ~ 0, ± I,. .. are obviously 
built out of the fundamental generators! a':,as j, IH.19 and 
constitute an irreducible representation of the SU(2) algebra, 

B. We wish to define the spin operators and the spin 
Hamiltonian on the domain ,)Y'xyz belonging to the carrier 
space JY'SG of quantum soliton operators. But for this pur
pose an irreducible spin! realization of the Hxyz is inappro
priate (no unique choice of the irreducibility domain in 
dY'SG ), 

Let us introduce the following functions of ! a': ,as J : 

~/ = (2s)I/Z(1 - atak/2s)1/2ak 

~k = (2s) I/Zat(l - atak /2s)1/2 

s = 112,1,312, ... , 

which satisfy in JY' the following operator identities 

[

A3
A ± _ A J ~;,~ ] ~ - ± ~;8,/fz. 

(5.5) 

(5.6) 

It is the Holstein-Primakoffrealization of the SU(2).18,19 In 
the single site Hilbert space hi' let us specify a proper sub-
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space P,h; by demanding that Psh; (Ps is a projection) is a 
linear span of all eigenvectors In) of a~a; for which a~a; In) 
= n In), n<2s. One can easily check that the operator S; acts 

on P,h; invariantiy. Thus if restricted to P,h;, S; = P:S;P, 
generates an irreducible spin s = n/2 representation of the 
SU(2) group Lie algebra. 

Let us now introduce a coherent state domain in hi' so 
that a single site coherent state la); is given. Then 

lim; (aIS; la); = J;(a), (5.7) 
fi--o -

where 

J;+ (a) = (2s)1/2(1 - la; 12/2s)I!2a; , 

J;- (a) = (2s)I!2(1 - la j 12/2s)1/2aj , (5.8) 

J;(a) = s -Ia; 12
, 

and moreover because (5.7) and (5.8) holds true for all i = 0, 
± 1, ... , the direct product state expectation in terms of la) 

leads to: 

lim (a I H xyz la) = - 2/aJ~(a)J~+ 1 (a). (5.9) 
IJ-----+O a,s 

For the product state la) = njla)j = lals) whosetransla
tion parameters satisfy 

laj 12<2s Vi = 0, ± 1,... (5.10) 

the [sj(a) I admit the following parametrization 

la j 12: = s(1 - coseJ, 

Rea; = sinejcoSt,b;l[(1 + coseJ/s)] 1/2, 

Ima j = sinejsin~;I[(1 + coseJ/s]I/Z, 
so that 

J! = ssinejcoSt,bo 

J~ = ssinejsin~o 

J7 =scose j , 

andz8-32 

S 
lim lim (a,sl.=.!..la,s) = Sj' 
s-.ool;·O S 

H 
lim lim (a,sl -X;z la,s) 
, -0 oc fi--.o S 

-H ci - "'J aa - xyz - - ~ aSs S .\' f I' 
a,s 

with 
Sl = sinecos~, SZ = sinesin~, S3 = cose, 

provided 

la): = la,s), s = ~,q,. ... 

(5.11) 

(5.12) 

(5.13) 

C. The above procedures allow us to select a subset 
JYxyz in JYSG which via Ii-+O limit followed by the S--oo 
limit of state expectations allows us to reproduce a classical 
level for the spin! xyz Heisenberg model. The underlying 
soliton parameters (i.e., the boson transformation ones) are 
given by (5.11) with s = !. 

In this way not only does the quantum sine-Gordon 
system recover the spin ~ xyz model spectrum and the state 
space, the classical levels of both systems also exhibit the 
relation, as a consequence of the quantum one. 

Remark 1: Because, after taking the continuum limit, 
the boson transformation parameters a(x,t ) are themselves 
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parametrized by the classical spins s(x,t ),the sine-Gordon 
solitons can be viewed as functions of these spins also. It 
seems that classical motions on the phase manifold of the 
classical xyz Heisenberg system have their image in the cor
responding submanifold of the sine-Gordon phase space, 
obviously if the respective a's obey (5.1O}-(5.12). 

Remark 2: In the above we have mainly discussed a 
discrete (lattice) version of the xyz model. Obviously, under 
an appropriate limiting operation, a continuous model can 
always be formally received. However, for the general case 
(i.e., with no restrictions on the coupling constants of the 
sine-Gordon system) the continuum limit may not exist on 
the quantum level (compare Refs. 19 and 20). 

Remark 3: Let us comment that quite analgous applica
tion of the tree approximation for the Bose constructed Fer
mi system (however without a subsequent s __ 00 limit as in 
the above) allows us to obtain an appropriate (commuting 
ring) c-number level for the Dirac field, 17 with no recourse to 
the Grassmann algebra methods. An analog of the infinite 
spin limit was then constructed for the Dirac system33 at 
least on the level of relativistic quantum mechanics. 

Remark 4: By taking advantage of the "psudoparti
cle"34 structure of the Thirring model (the 
N = Sdxt/l+ tP = 0 sector) 

H= fdx [-i(tPtJxtPl-tPZ+ J xtP2) 

+ mO(tPl+t/l2 + t/lttPl) +2gtPl+tP2+tPztPd, 

[t/l + (x),tP(Y) J = 8(x - y)J, tPIO) = (Olt/l + = 0, 

(5.14) 

the eigenstates of H are found to be in the form 

ItP) = IfdX 1 ••• dX j Xa, ... ai(XI,· .. ,x;)tPa~ (XI)· .. tPa~ (xJIO), 
lal 

(5.15) 

with XU(x) being the totally antisymmetric wavefunction. Be
cause tP,t/l + are the (free) pseudoparticJe fields, we can at 
once repeat step by step all considerations of the papers I h, 17 

on quantization of spinor fields. Namely, the Thirring model 
can be considered as a spin! approximation of the subsidiary 
two-component Bose system (field). The tree approximation, 
if applied to this mediating Bose level, immediately recovers 
the classical Thirring model (defined on the c-number com
muting ring of spinor functions) by considering the associat
ed-with-fermions Bose transformed operators and then tak
ing the vacuum expectation values in the tree 
approximation. For this (non Grassmann) classical Thirring 
model complete integrability was proved and the soliton so
lutions found in Ref. 35. It neatly disproves the physical (!) 
utility of Grassmann algebra methods for the case of the 
Thirring model. 

Remark 5: The above-mentioned two-component Bose 
field, (a four-component one in case of the Dirac system in 
1 + 3 dimensions), acquires a physical meaning if considered 
in the framework of the "field-reservoir" interaction 19,20 

where the spin ~ approximation procedure for the sine-Gor
don system does automatically involve an additional to the 
fundamental one [a~,a, L ~ 0, + I,"" field of the reservoir 
[ a~,a, L ~ 0, ±- I. ... , which all together give rise to 
tPptPt; tP2'tP/ in the continuum limit. Notice that I a~,a, I 
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describe elementary excitations of the sine-Gordon field, 
while (a: ,as I describe those induced in the reservoir. Quan
tized tf;,tf; + are given in terms of the Bose constructed Fermi 
generators ba = ba(a*,a,a*,a), b: = b :(a*,a,a*,a)a ~ 1.2 so 
that the Lorentz invariance of the Thirring model becomes 
the Lorentz in variance of the field-reservoir system in the 
spin ~ approximation. 
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The mathematical consequences of the ansatz that the generators of internal transformations, as 
well as the parameters, may be space-time-dependent is investigated. In addition to the Yang
Mills type fields, a transformation changing field must be introduced. The formalism developed is 
consistent. An appendix contains a derivation of the Fock-Ivanenko coefficient for the Dirac 
equation in general relativity that shows a connection between the ideas developed here and gauge 
fields. 

PACS numbers: 11.10.Np, 11.1O.Qr 

I. INTRODUCTION 

The history of physics provides many examples where 
an increase in the generality of the transformation group, of 
the kinematical and dynamical variables, provided the 
mathematical basis for a more general theory. I As is well 
known, gauge fields are introduced as one goes from a global 
internal transformation group to a local one. 2 Similarly, the 
jump from Lorentz transformations to the four-dimensional 
manifold mapping group accompanies the change in theory 
from special to general relativity. 3 Other examples abound.4 

All these pairs of theories have the feature that the more 
general one reduces to the less general one as the transforma
tion group is properly specialized. In gauge theories, for ex
ample, some of the generators of the transformation group 
may be excluded and hierarchies of subgroups studied. 

No theory, to the author's knowledge, allows the gener
ators of the transformations to be dynamical variables: Most 
are based on an a priority chosen Lie group (or, for supergra
vity, a graded Lie algebra). The purpose of this paper is to 
explore the possibility, the mathematical consistency, and 
some potential properties of a theory containing an internal 
transformation group that is dynamically determined. Thus 
both the generators and the parameters of the transforma
tions will vary over space-time. In particular, when the 
transformation altering field (to be defined) is small or van
ishes in some region then the field will not possess that trans
formation. This is independent of the values of the arbitrary 
parameters. 

In Sec. II the transformation law and some geometrical 
objects will be studied. It will be seen that transformations 
are closely related to Yang-Mills gauge transformations, the 
difference being the addition of a symmetry changing field. 
Section III contains a sumary of the results and a brief dis
cussion. The appendix features a derivation of the Fock
Ivanenko coefficientS that shows a link between the Yang
Mills approach, the formalism used here, and the Dirac 
equation. 

II. FORMALISM 

The standard gauge formalism6 involves a multicom
ponent field if! whose internal transformation properties are 
given by 

(1 ) 

where the parameters of the transformation are the infinites
mal quantities E"' and Sa are the generators of the Lie group 
used. While the E"' are taken to be functions of position in 
space-time, the Sa are not. 

Our generalization of Eq. (1) consists of considering the 
generators as being functions of space-time position. Let us 
rewrite Eq. (1) as 

(2) 

where the presence of capital Latin indices indicates this 
change of viewpoint. Note that w hile ~ are functions of posi
tion' they are also infinitesmals. In addition, they are to be 
arbitrarily specifiable. Accordingly, an absorption of the 
space-time dependence of SA into ~ is not possible. This 
method allows for the possibility that the dynamics, in deter
mining the space-time dependence of SA' will delimit the 
transformation groups: allowing or excluding, "freezing
out." or weakening some transformations in different re
gions of space-time. 

We shall consider, in a manner similar to that used with 
the vierbein, that SA is given in terms of Sa by 

(3) 

The field h A a carries the desired space-time changes in the 
transformations. This enables us to determine the derivative 
of SA: 

SA.!1- = hA ".!1-Sa' (4) 
Takinggab to be the natural metric of the group generated by 
Sa' we define gAB by 

(5) 

Using these metrics to raise and lower their respective types 
of indices, we have 

g"b = hA ahB bgAB, 

Db a = hA ah b A, 

DBA = ha Ah B
a. 

Therefore, Eq. (4) is 

SA." =hAa."haBSB' 

(6) 

(7) 

To check that transformations (2) still form a group, we 
need to have the transform properties of hA a and SA' We 
require that 

~SA = iCI [SB,SA ] - iCIeB CASC - SA."S". (8) 
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The first term comes from the fact that SA is considered to be 
a matrix while rp in Eq. (2) is a column. The second term in 
Eq. (8) takes care of the transformation rule for the index C, 
and the last term is a transport term for space-time transfor
mations with descriptor Sp . 

Since 

(9) 

where Ca cb are the structure constants of the Sa group, if we 
define 

then Eq. (8) will reduce to 

8SA = - SA.I"SI"· 

(10) 

(ll) 

Next we need the transformation properties of hA a. We 
shall first show that parameters E" and~, for transforma
tions of the two types of indices, must be related. To do this, 
calculate 8S A.p two ways and equate the two results. We take 

8hA
a= -i~CBCAhca+iEbCbachAc_hAa,pSI", (12) 

8hA
a = - hAa'l"SI" - i(~hBb - Eb)Cb achAc. 

Now use Eqs. (7), (11), and (12) to calculate 

8SA •,1 

- [ - hA a,pha B'I"SP - i(~hB b - ~)Cb achA cha B,I" 

- hA aha B,ppSP - hA aha B,pSP'1" 

+ i(~hBb - Eb)'l"hA QCb cahc B 

+ i(~hB b - Eb )Cb cahA Qhc B,I' ]SB + hA aha B,I' SB.pS P. 

Now from Eq. (11) directly 

8SA,I' = - hAa,ppha BSBSP - hAa,pha BSBSP,/.L" 

On equating the two values obtained for 8SA ,I" we obtain the 
condition 

0= -i(~hBb_~)'I'CbBASB' 

Therefore, ~ and ~ must be related with 

Eb = ~hBb + C b
, (13) 

where C b is a space-time constant vector. To preserve the 
maximum freedom, we shall assume C b is taken to be 
nonzero. 

Now we may check that the transformations in Eq. (2) 
form a group. Calculate 828,rp and find 

828,rp 

= [- iE(llS2,1SArp - iE/.pStSArp - iE,ASA'I'Strp 

- iE/SA,'lStrp - iE/SArp'l'st - iE,ASArp'I'St 
+ rp'flVS2 vSt" + rp,t.(S2 v,pst" + S, v,I'S 1')] 

- rp"lS/',VS," - E/E1CSBSCrp· 

Construction of 8281rp - 8,82rp will result in the terms in the 
brackets cancelling. We obtain 

828,rp - 8,82 rp = iE/SArp - rp,I'U', (14) 

where 

S3
p 

= Sl',VS," - St.vS2'" 
E/ = iE/E,cCB

A
C' ( 15) 

Despite the possibility that the dynamics may force h A a 

to be zero in some regions, we have a transformation group. 
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The actual transformation group that applies in a region of 
space-time is dynamically determined. 

Let us examine a special case in more detail before pro
ceeding further with the formalism. Integrate Eq. (2) to finite 
transformations for the case of only one parameter, E. Fur
ther, assume h A a is diagonal with relevant component hand 
also that (SA)2 = 1. Then 

8rp = exp(iEhSa)rp = cosEh)rp + (sinEh )Sarp. (16) 

Note that if h is unity, this is the standard transformation law 
that holds with gauge transformations. On the other hand, if 
h approaches zero, no finite value of E (only finite transfor
mations can be contemplated in experiments) will produce 
any transformation on rp. We have gained the possibility of 
dynamically weakening a transformation law so that entire 
subgroups may be eliminated. 

If h A a is not diagonal, mixing of terms will occur in the 
expansion ofEq. (16). For a single parameter E, transforma
tions will occur on rp that are as if a variety of parameters 
were present. This means that transformations may occur 
that were not expected on the basis of our selection of 
parameters. 

Now continue the development to the Yang-Mills pro
cedure. Require that the covariant derivative of rp ,rp 'I' ' trans
form internally as rp does and as a space-time vector: 

8rp'fl = i~ SA 'I' - rp'l's v,l" - rp'll.VS V. (17) 

Then the ansatz that 

rp'l' = rp'l' + rl'rp, 

leads to the transformation law for rl' 

8rl' = -rl"VSv-rVSv"l +i~[SA,rl'] 

- i~'I'SA - i~SA,I" 

( 18) 

(19) 

The last term vanishes in the gauge formalism. Now intro
duce fields BI' A and BI' a with 

rl' = B'l ASA = BI' AhA aSa = BI' aSa. 

After substituting Eq. (20) into Eq. (19), we obtain 
8B A = _ B A f;-p _ B Af;-p + iEcc A B B I' I' ,p':> p ':> ,I' C B I' 

(20) 

-i(~hBal."haA, (2Ia) 

8B a = _ B a f;-p _ B af;-p + iEbC aBc 
I' I' ,p':> p ':> ,I' b c I' 

- i(~hA 11" (2Ib) 

Now define Fl'v in terms of r 'l by 

rp"lt. - ifJ,vll = Fl'l'ifJ = WI"V - rv,1' + rVT'l - rl'rv)ifJ. (22) 

Calculation of 8 ~'l' gives 

8F =-F f;-P-F f;-p -F f;-p +l'-A[S F] I'V IIV,p':> p",:> ,I' I'p':> ," to A' I'l' . 
(23) 

Just as in the gauge formalism the nontensor transformation 
terms have cancelled out. 

Setting Fl'l' = Fl'l' A SA and substituting into Eqs. (22) 
and (23), we obtain 

F A - Bah A Bah A + B 'B BC A 
Ill' - li,v a - V,lt a v f..l c B' (24) 

8F A - F A f;- p F f;- p F f;- P 
/ll' - - /-tv ,p~ - pv~ .11 - J.LP~ ,v 

+ ieCc ABF""B. (25) 

Note that Fl'l' A transforms like a tensor but is constructed 
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out of a combination of B I' A and h A a fields. If h A a is the delta 
function, then the Yang-Mills case immediately follows. 

Now search for objects that transform as tensors but are 
constructed solely from the hA a, their derivatives, and the 
metric. To obtain one such object, define hI' by 

hI' = hA ah/w (26) 

The calculation of 8hl' reveals that hI' is a vector. Scalars 
constructible in terms of hA a and its derivatives include 
hl'hl',ha A'l'hAa,v~v, andgAB'l'gtB,v~v. 

Let us begin to explore the possibility of a field theory 
built from these objects. First a Lagrangian density must be 
formed. This density, in order that it provide equations of 
motion for the h A a field, must contain terms that are scalars, 
like those constructed above, multiplied by v' - g. Let us 
leave the problem of the selection of the "correct" term for 
another time and investigate the kinds of results that are 
possible. Select the term (v' - g)gAB'l'gtB.v~v on an ad hoc 
basis and consider the Lagrangian density 

= (v' - g) [K-IR + !~'v AFAI'V + L", + gAB.l'gtB.v~v]. (27) 

Here R is the curvature scalar, and L", is a function of ifJ, 
ifJ.1' ,BI' A ,hA a, and Sa. Let us further specialize by fixing the 
metric, gl'v = 1] I'V' The independent variants are ifJ, B I' A, and 
hA a: The Sa are fixed. Note that the imposition of the mini
mal coupling restriction on how the BI' A field couples to ifJ 
does not prevent the possibility of terms like ifJ tY'h"ifJ in L", 
(if ifJ is a spinor field). Other terms that are new include 
ifJ t h l'ifJ;I" This type of term offers the possibility offorming 
equations that are first order in ifJ;1' even when ifJ is not a field 
with half-integral spin.7 

III. DISCUSSION 

It is not clear what the number of necessary "elemen
tary" particles will prove to be.s As scattering experiments 
have been performed at higher energies, more particles have 
been discovered, and larger symmetry groups have been 
needed to describe them. 

Nonlinear realizations of the SL (2,C) group have at
tracted recent study because they offer new possibilities for 
the classification of elementary particles.9 That work is ex
citing not only because new wave equations are obtained but 
also because nonlinear systems usually imply that particle 
number is not conserved. to The work in this paper is not 
directly related to those efforts, despite some similarities in 
the transformation equations. II This is because here the em
phasis is on allowing the transformation group to be as gen
eral as possible: The symmetry group is the full covariance 
group because no absolute objects are allowed. 12 Since the 
Lagrangian is a dynamical function of all the fields, one may, 
only after variation, solve for hA a and eliminate it in all the 
other equations. Then the transformations of some of the 
field variables will be of the nonlinear type. 

No new physics is described in this paper. Rather an 
attempt has been made to generalize the gauge transforma
tion idea while not requiring the a priori specification of a 
fixed internal transformation group as the basis for a theory. 
With the presence of vectors like hp. , it is possible to con-
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struct new particle field equations. It is an open question 
whether any of these are consistent with experimental parti
cle physics. 
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APPENDIX 

It is amusing to see that the Fock-Ivanenko coeffi
cient l3 can be obtained for the Dirac field in general relativ
ity by a Yang-Mills type of procedure. This is interesting to 
us in the present case because the parameters ~ and the 
transformation matrices SA are both functions of position. 
Taking 

8tP=i~SAtP, (AI) 

we write the covariant derivative of tP as 

tP;" = tP", + r"tP = tP.1' + Bp. ASA tP· (A2) 

We assume that the Fock-Ivanenko coefficient r" can be 
written in terms of a B" A field. Now the condition that the 
covariant derivative of the Dirac gamma matrices be zero 
implies 

y\v = 0 = y'.v + [rv,y'l + yPrpv"· (A3) 

Of course, 

r"rv = - r"rl' + 2g"y. (A4) 

Now let the A index be shorthand for the pa index pair and 
define SA = rp r a - r a r p' On substituting these equations 
into Eq. (A3), we find that it is possible to quickly solve for 
B A W' h • .P h "p' h' . ". It r ,y = ,v rp " were rp ' IS a constant matnx, 
we obtain 

(AS) 

'See, for example, J. L. Anderson, Principles of Relativity Physics (Aca
demic, New York, 1967), Chap, 4, 
'c. N. Yang and R. L. Mills, Phys. Rev. 96,191 (1954). 
'A. Einstein, S. B. Preuss Akad. Wiss., 788, 799, and 844(1915); Ann. Phys. 
Lpz, 49, 769 (1916). 

·See Ref. 1. 
'V. Fock and D. Ivanenko, Compt. Rend. 188, 1470 (1929); V. Fock, Z. 
Physik 57, 261 (1929). 

"Notation follows Ref, J. 
7 Another method for obtaining field equations that are first order in .p;~ but 

not half-integral spin may be a generalization ofthe approach of Dirac and 
Staunton. P.A.M. Dirac, Proc. R. Soc. A 322, 435 (1971); L. P. Staunton, 
Phys. Rev. D 10,1760 (1974). 

'Supergravity theorists are investigating groups like E" and SO,. in an 
effort to include known particle phenomena. Talks by M. Gell-Mann and 
by J. H. Scharz at the Sept. 1979 Supergravity Workshop (Stony Brook) to 
be published. 

"8. J. Dalton, J. Math Phys. 20,1520 (1979); D. L. Pursey, Ann. Phys. 
(N.Y.) 32,157 (1965), and numerous references therein. 

,oJ. F. L. Hopkinson and E. Reya, Phys. Rev. D 5,34211972). 
"Compare Eq. (J 1) with Eq. (5.8) of Dalton. 
"See Ref. J. 
UAnother method of obtaining this result is found in J. G. Fletcher, Nuovo 

Cimento 8, 451 (1958). 
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Bargmann-Wigner equations: Symmetries of multispinors and equations of 
motion a) 

M. A. Rodriguez and M. Lorente b) 

Departamento de Mitodos Matemdticos de fa Frsica, Facuftad de Ciencias Frsicas, Universidad Complutense 
de Madrid, Madrid-3, Spain 

(Received 18 July 1980; accepted for publication 23 December 1980) 

A study of the Bargmann-Wigner wave equations (BWE) is carried out from the group theoretical 
point of view. Starting with totally symmetric multispinors of rank n and their expansion in terms 
of tensor coefficients, the general symmetry properties among them, the equation of motion and 
the Lorentz content of these tensors are derived for systems of arbitrary spin and nonzero mass. 
The same procedure is applied to multispinors of mixed symmetry corresponding to any Young 
diagram. Complete formulas are found for these multispinors, which are necessary in the 
construction of the first order Lagrangian for the BWE. 

PACS numbers: 11.10.Qr 

I. INTRODUCTION 

The wavefunctions in the BWE I are tensorial products 
offour-component spinors, which satisfy the Dirac equation 
for each of their spinorial indices. With respect to other rela
tivistic wave equations of higher spin, the BWE have the 
advantage of representing particles with unique mass and 
spin. Their equivalence with Klein-Gordon, Proca, and 
Rarita-Schwinger equations for particles of spin 0, 1, and 
3/2 respectively is well known. 1-4 Salam, Delbourgo, and 
Strathdee5 used them in the representation of the supermul
tiplet models for heavy hadrons. 

The study of free particles of higher spin can be at
tacked by group theoretical methods. When electromagnetic 
interactions are introduced, some physical problems appear. 
Velo and Zwanzinger6 found that the equation for a particle 
of spin 3/2 with electromagnetic coupling leads to velocities 
higher than the velocity of light. Also Wightman7 and Capri 
pointed out that the solution of this equation is stable when 
there are no imaginary eigenvalues in the mass spectrum, as 
is the case of the Pauli-Fierz equation when some external 
field is coupled. 

Recent supersymmetry theories dealing with super
fields which are related to higher spin fields, need wave equa
tions for these fields, as in the work ofSokatchev,8 Ogie
vetsky and Sokatchev,9 Nieuwenhuizen,lO, Berends et al., 11 

where wave equations up to 5/2 spin are studied. 
In this paper we have carried out the study ofBWE for 

massive particles of arbitrary spin from the group theoretical 
point of view. In Sec. II we study symmetry properties of 
multispinors and their expansion in term of Lorentz tensors. 
We obtain closed expressions for any spin, and the equiv
alence between BWE and Pauli-Fierz equations for integer 
spin and the Rarita-Schwinger equation for half-integer 
spin. Afterwards, the Lorentz content of the tensor coeffi
cients in the expansion is described in detail. In Sec. III the 

a)This work contains part of the Doctoral Thesis of M. A. Rodriguez pre
sented to the Facultad de Ciencias Fisicas, Universidad Complutense de 
Madrid (Madrid, 1980). 

hlOne of the authors (M.A.R.) wishes to express his gratitude to the Minis
terio de Educaci6n y Ciencia for financial support. 

same program is applied to multispinors with arbitrary sym
metry, their expansion, and the Lorentz content~ 

II. BARGMANN-WIGNER EQUATIONS FOR TOTALLY 
SYMMETRIC MUL TISPINORS 

A. Basic concepts and notation 

Let B the space of spinors ifF, a = 1,2,3,4, which trans
form according to the (!,O) EB (O,!) representation ofSL(2,q. 12 

Using the charge conjugation matrix C 13 and the elements of 
the Dirac algebra, we can construct a basis for the direct 
product of the spaces B ® B, namely, 

where l"C -I ,a"vC -I are symmetric, and C -I, r C -1, 1" 
rC -1 are antisymmetric matrices. 

Any multispinor of rank n can be expanded in the basis 
A k , ® ... ®A k , ifn = 2r, and in the basisA k , ® .,. ®A k • ® ea if 
n = 2r + I, where {ea }, a = 1,2,3,4, is a basis for B. In the 
first case the coefficients of the expansion of a n-rank tensor 
are tensors under the Lorentz group. In the second case the 

coefficients are of the form X~""/l,' where ,ul .. ·,ur are tensor 
indices and a is a spin or index. 

The fundamental representation of the SU(2,2) group, 
when it is restricted to its subgroup SO(3, 1) is decomposed as 
(!,O) EB (O,!). Therefore, we can consider spinors as vectors in 
the carrier space of the fundamental representation of 
SU(2,2). 

In order to obtain the decomposition of any irreducible 
representation ofSU(2,2) when it is restricted to the (proper) 
Lorentz group, it is more convenient to use the weight dia
grams associated with the irreducible representations of 
SU(4), since we can go easily from this representation to the 
(finite) irreducible representation ofSU(2,2) by the standard 
technics of analytic continuations. 14 Due to the local ismor
phism between SU(4) and SO(6), given an arbitrary represen
tation ofSO( 6) of weight (m I ,m2,m 3)' we can obtain the SOt 4) 
content with the help of the branching laws SO(6)--+SO(5)--+
SO(4), and the result can be read off as the SO(3, I) content of 
the particular representation ofSU(2,2) (see Table I). 
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B. Symmetry properties and equations of. motion 

Let t/l{a •... .p} be a multispinor of n-rank totally symmet
ric, associated with the Young diagram [n]. The BWE im
pose the conditions on each index: 

(rp) TT' t/l{a"'T""p} = mt/l{a"'T'''p}. (2) 

Bargmann and Wigner proved that this set of equations cor
responds to an elementary system of unique spin s = nl2 and 
massm. 

Since t/l{a/3 ... p} is totally symmetric, its expansion can 
only have the elements Y"C -I, er.tVC -I and direct products 
of them. Since these elements are symmetric in pairs of indi
ces, the rest of the symmetry properties of the multispinor 
impose more conditions in tensorial coefficients of the 
expansion. 

For n = 1,2,3 the totally symmetric multispinors and 
their corresponding BWE lead to the Dirac, Proca, and Rar
ita-Schwinger equations, respectively. 15 For n = 4, the sym
metry properties of the 4-rank multispinors lead to the fol
lowing relation among the tensor coefficients that appear in 

the expansion: 

XIlV = XVIl, XIl
Il 

= 0, 

X [IlV] [pA] = X [pA ] [IlV], 

EIlVPAX [IlV] [pA] = 0, 

X [IlV] - ° [IlV] - , 

X [Ilv]v = 0, E X [vp]A = ° 
J-LvpA , 

XIlV = 4X [IlP] v] 
[p , 

X [IlV]P = YP[IlV]. 

(3) 

(4) 

(5) 

(6) 

(7) 

All the tensors can be obtained from X [IlV]P and X [IlV] [pA ]. 

The 16 independent components of the first tensor and the 
19 independent components of the second one are equal to 
the 35 independent components of the 4-rank multispinor. 
The BWE impose more conditions among the tensors, 
namely, 

(p2 _ m2)Xllv = 0, PIlXIlV = 0, (8) 

XlIlV]P = _ (i/2m)(pI"Xvp - pVXIlP), (9) 

X [IlV] [pA] = _ (l/4m2) [pi" (PPX vA _ pAXVP) 

- p"(PPXIlA - pAXIlP)]. (10) 

TABLE I. YD = Young diagram, HW = Highest weight, N = Dimension of the representation. 

YD HW SU(4) HW SO(6) N HW SO(5) N HW SO(4) N 

[I] (3/4, - 1/4, - 1/4, - 1/4) (1/2,1/2,1/2) 4 (1/2,1/2) 4 (1/2,1/2) 2 
(1/2, - 1/2) 2 

[2] (3/2, - 1/2, - 1/2, - 1/2) (1,1,1) 10 (1,1) 10 (I, I) 3 
(1,0) 4 
(I, -I) 3 

[I'] (1/2,1/2, - 1/2, - 1/2) (1,0,0) 6 (1,0) 5 (1,0) 4 
(0,0) I 

(0,0) I (0,0) I 
[3] (9/4, - 3/4, - 3/4, - 3/4) (3/2,3/2,3/2) 20 (3/2,3/2) 20 (3/2,3/2) 4 

(3/2,1/2) 6 
(3/2, - 1/2) 6 
(3/2, - 3/2) 4 

[2,1] (5/4,1/4, - 3/4, - 3/4) (3/2,1/2,1/2) 20 (3/2,1/2) 16 (3/2,1/2) 6 
(3/2, - 1/2) 6 
(1/2,1/2) 2 
(1/2, - 1/2) 2 

(1/2,1/2) 4 
[I'] (1/4,1/4,1/4, - 3/4) (1/2,1/2, - 1/2) 4 (1/2,1/2) 
[4] (3, -I, -I, -I,) (2,2,2) 35 (2,2) 35 (2,2) 5 

(2, I) 8 
(2,0) 9 
(2, -I) 8 
(2, - 2) 5 

[3, I] (2,0, -I, -I) (2, I, I) 45 (2, I) 35 (2, I) 8 
(2,0) 9 
(2, -I) 8 
(I, 1) 3 
(1,0) 4 
(I, I) 3 

(I, I) 10 
[2'] (I, I, -I, -I) (2,0,0) 20 (2,0) 14 (2,0) 9 

(1,0) 4 
(0,0) I 

(1,0) 5 
(0,0) I 

[2,1'] (1,0,0, -I) (I, 1,0) 15 (I, I) 10 
(1,0) 5 

[J'] (0,0,0,0) (0,0,0) (0,0) I 
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(8) together with (3) is equivalent to the Pauli-Fierz equa
tions for a field of mass m and spin 2. Substituting (8), (9), and 
(10) in the expansion of the multispinor, we easily obtain 

t/I{"PytJ} = [yp; m 1'C -I rp 
[yp; m yYC -I rtJx{PY}' (11) 

a useful relation between the 4-rank multispinor and the 
traceless symmetric tensor of the Pauli-Fierz field of spin 
2.16 

For n = 5 we can carry out similar arguments, with the 
difference that the tensor coefficients should have a spinor 
index besides the normal tensor indices. 

From the symmetry among the spinor indices one gets a 
set of relations similar to those of 4-rank multi spin or [Eqs. 
(3)-(7)]. Besides, one obtains other constraints among the 
tensor coefficients, characteristic of odd-rank multispinors: 

(yP)"pXP{py} = 0, (yP)"pXP(I'Y)p = 0, (12) 

(d'V)"pXP(I'V)p = 0, (13) 

(d'V)"pXP(I'V) (pA ) = 0, 

X"{vp} = 2i(1')"pXP(l'v)p' 

(14) 

(15) 

X"(vp)A = 2i(1')" pXP(I'A) (vp)' (16) 

All these conditions can be derived from two of them, (14) 
and (16), which are 84 independent constraints. Thus we 
have finally 140 - 84 = 56 independent components as it 
should correspond to a totally symmetric bispinor of rank 5. 

The BWE gives similar results as in the case n = 4: 

(p2 _ m2)Xal'V = 0, p'"xal'v = 0, (17) 

xa(I'V)p = - (i/2m) (PI'X"VP - pvxal'P) (18) 

XU[l'v) (pA) = - (l/4m 2)[PI' (PpXa"A _p..xa"p) 

-P,,(PpxaI'A -p..Xl'p)] (19) 
All the tensors can be expressed in terms of the traceless 

symmetric tensor xal'''' But (17) together with (2) is equiv
alent to the pair of equations 

(yp - m)apXPl'v = 0, (1')apXPI'V = 0, (20) 

which are the Rarita-Schwinger equations for a field of mass 
m and spin 5/2. 

We can easily generalize the above results to the totally 
symmetric multispinors of rank n. 

n = 2r 
From the symmetries of the spinor indices, the symme

tries of the tensor indices which appear in the expansion of 
the multispinor can be easily derived: 

(i) X{J.<, ... I',} is a totally symmetric tensor and traceless for 
any pair of indices. 

(ii)X[I',1'2) .. ·(j.lZk_JI'1k]{J.<Zk. J"'I',+k}' k = 1,2, ... ,r 
(a) is symmetric and traceless in the indices 

f.l2k + t ·"f.lr + k' 

(b) is antisymmetric in each pair of indices inside of any 
square bracket, 

(c) is symmetric in the permutation of any pair of square 
brackets. 

All the tensor coefficients can be expressed, by contrac
tion, in terms of the two independent tensors: 

X(I"I-")"·(j.l1'_ 31-'" ,]1',,-, andX(I',1'2)"·(j.l,,_,I''']· 

From the BWE we can obtain the general relations 

(p2 _ m2)X{J.<, ... I',} = 0, p'"X{J.<1'2"'I',} = 0, (24) 

X 11',1"){u'''',J" ,}= - (i/2m)(pI',X{J.<, ... I',+'}-pl',X{J.<, ... I'" ,}), 
(25) 

X 1I',I',) 11'31-'.) 11',"'1',+ ,I 
= ( - i/2m)2 [PI', (p1',X{J.<1I-' .... I',+ ,} - PI'.X{u1l-'"fL,"·IJ" ,})] 

- PI', (p1',X{J.<,I' .... I',+ ,} - PI'.X{J.<,I""'I', , ,})], (26) 

Equations (24) are equivalent to the Pauli-Fierz equa
tion for a field of mass m and spin r. From (24) and (25) we 
can also prove by induction the relation between the totally 
symmetric multispinor of BWE and the totally symmetric 
tensor of Pauli-Fierz equations: 

./,{a ,a''''a,.} = IIr [yp + m .P.C - I] a1k - ,au
X (27) 

Of' r {u, ... I',}' 
k~1 m 

n=2r+l 
The symmetries of the tensorial indices f.lI'''f.l2r are 

completely equivalent to those of tensor coefficients in the 
expansion ofmultispinors of rank 2r; see Eqs. (21)-(23). For 
the symmetries of the multispinor index a 2r + I' we state the 
following result: 

(1') a
pXP{J.<I',"'I',} = 0, (28) 

(1') a
pXP[I',I")"'(j.l'k ,I'U]{J.<I"H ,"'l-'kH} = 0, l<k<r-l,(29) 

l<k<r, 
(30) 

(31) 

(32) 

The BWE give rise to equivalent relations among the 
tensorial coefficients to those of multispinors of rank 2r. See 
(24)-(26). It means that all the tensors can be expressed in 
terms of X a {J.<, ... I',}' This tensor spinor satisfies 

(yp - m)a
pXP{u, ... I',} = 0, (yP)

a
pXP{J.<1'2'''I',} = 0, 

which are the Rarita-Schwinger equation for a field of mass 
m and spin s = r +~. We have obtained a relation between 
the totally symmetric multispinor of rank 2r + 1 and the 
symmetric traceless tensor-spinor of Rarita-Schwinger, 
namely, 

./,{a, ... a". ,} = IIr [yp + m .P.C -I ]"Zk '''''X a" • , 
Of' r {J.<, ... I',}' 

k~1 m 
(33) 

C. Lorentz content of multispinors 

(21) As we have said t/I{a, ... an
} can be considered as a tensor of 

(22) a space in which acts some representation of the SU(2,2) 
(23) group, with Young diagram [n,D,D]. The equivalent repre-
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sentation ofSO(4,2) will have the highest weight (nI2, n12, 
nI2). In the restriction ofSO(4,2) to SO(3, 1) this representa
tion decomposes as follows: 

(nI2,n/2) EB (nI2,nI2 - 1) EB ••• EB (n/2, - nl2 + 1) 
® (nI2, - nI2). 
Our task is to know which of these representations of 

SO(3, 1) is associated with the tensor coefficients in the ex
pansion of multispinors. 

We distinguish two cases 
n = 2r: Using the spinor notation 17 of the Lorentz 

group (k,/ ) the decomposition reads 

[(r,O) EB (O,r)] EB [(r - M) EB (~,r - !)] 

EB"'EB [(r: 1 ,r~ 1 )EB(r~ 1 ,r: 1 )] EB(;' ;) 

the tensor coefficients are associated with one or several irre
ducible representations (of the complete Lorentz group) of 
the above decomposition: X {jL""/l,} transforms under SO(3, 1) 
according to the representation (rI2,r/2): 

X[ll,ll,[{U""/l" I} transforms according to 

( 
r + 1 r - 1) EB (r - 1 , r + 1), 

2 ' 2 2 2 

: [(r:2.r~2)EBC~2,r:2)]EB(;';). 
X[ll,ll,[ ... [I''' ,1'" ,J/l" I with [(r - ~,p EB q,r -~) J 

EB [ (r - ~, ~ ) EB ( ~ ,r - ~)] 

{

( ; , ; ) if r is odd 

EB· .. EB (r+ 1 r-I)EB(r-I r+ 1) 
2 ' 2 2 ' 2 

X[/l,ll,I'''[ll" Ill"J with [(r,O) EB (O,r)] 

EB [(r-I,l) EB (I, r-I)] EB··· 

if ""ven,} 

{( 
r + 1 r - 1 ) (r - 1 r + 1 ) . f . dd} -2-'-2- EB -2-'-2- I r IS 0 

EB (r r) 'f . 2'2 I r IS even. 

n = 2r + 1: In this case the Lorentz content of the totally 
symmetric multi spin or is as follows: 

[(r + ~,O) EB (O,r + 0] EB [(r,~) EB (~,r)] EB ••• 

EB[(r/2+ 1,r/2-!)~(r/2-!,r/2+ 1)] 
EB [(r/2 + !,r/2) EB (rI2,r/2 + P]· 

The Lorentz content of the tensor spinors is easily obtained 
and gives 

X "{jL''''I',} transforms according to Ll" 

X ex transforms according to Ll, + I , 
[ll,ll,IVl''''ll, t I} 

,/l"J transforms according to 
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where 

Ll =(~~)EB(~~) , 2'2 2' 2 ' 

Ll = [(~~) (~~)] A ,+ I 2' 2 EB 2' 2 EB"-I" 

Ll = [(~~) (~~)] A ,+ I 2' 2 EB 2' 2 EB"-I" 

Ill. BARGMANN-WIGNER EQUATIONS FOR 
MUL TISPINORS OF MIXED SYMMETRIES 

A. Uniqueness of mass and spin 
In the case of not totally symmetric multispinors, due to 

the unimodularity of the SU(2,2) group, only those Young 
diagrams with three or less rows must be considered. But 
when we apply BWE to the multispinors with a Young dia
gram of three rows, we get zero solution. In fact, let tP be a 
multispinor of n rank with three antisymmetric indices at 
least, in one column. In the rest system, the multispinor tP 
satisfies 

(34) 

Using a representation for y's in which 
yO = diag( 1,1, - 1, - 1), we immediately see that indices a I' 
a 2, ••• , an can take the values 1 or 2 in the case of positive 
energy solutions [ lower sign of(34)], and 3 or 4 in the case of 
negative energy solutions [upper sign of(34)]. But when the 
Young diagram has three antisymmetric indices in one col
umn, we have to use three different values which is impossi
ble; therefore, the multispinor must vanish. 

Thus we are left with multispinors the Young diagrams 
of which have only two rows. It is still possible to achieve 
more simplification. Let tP be a multispinor of rank n corre
sponding to positive energy solutions. In the rest system tP 
transforms as an irreducible representation ofSU(2). Due to 
the unimodularity of this group, all the Young diagrams 
with two rows are equivalent to diagrams of one row, which 
are obtained by elimination of columns with two boxes. 

For these reasons the multispinors of mixed symmetries 
also correspond to systems of unique spin as in the case of 
totally symmetric multispinors. 

The uniqueness of mass of these multispinors with two 
rows in obvious from the BWE. 

B. Symmetry properties and equations of motion 

The simplest Young diagrams with mixed symmetry 
[12] and [2,1] have been studied thoroughly. IS For the dia
gram [3,1] the multispinor can be expanded in the A k basis. 

From the symmetry properties of the spinor indices and 

one obtains the following relations among the tensorial 
coefficients 19: 

X il - '.-/lVpAX X - 2'XP 
- It: 5"[pA I' 5" - I 5[Pll i' 

X [llV[ = - !E""ll' (X5 [A, 1 + iYu , ), Y5,," = 0; 
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and from BWE, we get more conditions: 

with 

X/L = X(/LV I = 0, 

YS/LV = (lIm)p/LXSV ' 

XS(/LVI = - (iI2m) (P/LXsv - pvXS/L)' 

XS/L(VP I = - (iI2m2)P/L (P"Xsp - ppXsv)' 

(38) 

(39) 

(40) 

(41) 

(42) 

Therefore all the coefficients can be expressed in terms of 
Xs ,which represents a field of spin 1. From (38)-(42) we can 
ea:ily get the relation between the syptmetric multispinor 
and the tensor XS/L' namely, 

,p(a,a,]{a,a,} = [ yp; m rC -I t a2 

X [ yp; m ylLC -I ta'XS/L' (43) 

For the Young diagram [2,2] we have the following con
strains for the 4-rank multispinor: 

,p'aPI(ro] + ,plarJl6P] + ,p(aollPrl = 0, 

,p(aPJlr/j] = ,p(r/j](aPI. 

From the symmetry of the spinor indices, we obtain 

(44) 

(45) 

x + X55 - X55"" = 0, (47) 

and, after the application of BWE, we get 

X = X5 = X5" = 0, (48) 

X 5S" = (lIm)p"X55, X S5"v = (lIm2)p"pvX55' (49) 

(P2 _ m 2)X55 = 0. (50) 

Therefore the tensor X55 represents a field of zero spin, as 
expected. From (48)-(50) one easily obtains 

,p(a,a,](a,a,1 = [ yp; m rC -I t a
, 

X [yp; m rC -lta
,X55 . (51) 

We can easily generalize the last equations for the bi
spinors with arbitrary Young diagram of two rows: 

(52) 

where XS ... S{jL''''/L.} is a tensor totally symmetric and traceless 
in the tensor indices satisfying 

(p2 - m
2
)Xs ... s{jL, ... ".} = 0, pI"Xs ... s{jL, ... ".} = 0, (53) 

[s + 2r + l,s] :,p(a,a,I ... [a,. ,a2.l{a,.o+ I· .. a"., + ~ + ,} 

= tr [yp + m r C _1]U2, _la" 

;=\ m 

X II' [yp + m ")J.jC -I JULIH}l IU'I<+J1Xa2l .• + ., + I 
r 5 ... S{jL, ... ".}, 

j=1 m 
(54) 

where Xas ... s{jL, ... ".} is a tensor spinor totally symmetric and 
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traceless in its tensor indices, and satisfies the equation of 
motion 

(yp - m)Xs ... S{jL''''/L.} = 0, (yI')UpXPs ... S{jL/L''''/L.} = 0, 
(55) 

corresponding to a field of spin r + !. 

C. Lorentz content of the tensor coefficients 

(a) Young diagram [r,r]. The SO(4,2) representation as
sociated with this tableau is (r,O,O), which decomposes, when 
it is restricted to SO(3, 1), into 

( ; , ; ) a>2( r; 1 , r ; 1 ) a> •• ' a> r( !,!) a> (r + 1 )(0,0). 

The following tensors transform according to the repre
sentation (0,0): 

X ,x5'%55" .. ,x55·"5' 
rtimes 

which are equal among themselves. With respect to the re
presentation (!,~) we have the following tensors: 

rtimes 

Two tensors, 

X 
55 ... S{jL, .. ·"._ I} 
.- I 

contain in their representations [(r - 1 )/2, (r - 1 )12], and 
finally the Lorentz content of X{jL, ... ".} has among its compo
nents the representation (r/2,r/2). 

(b) Young diagram [r,r - 1]. The weight is (r - ~,!,~) 
which, when restricted to Lorentz group, decomposes into 

[(;,r; 1)a>('; 1,;)] 
a>2 ---- a> ---- a> [(

r-l r-2) (r-2 r-l)] 
2 ' 2 2 ' 2 

... a> (r - 1)[ (l,P a> q,1)] a> r[ q,O) a> CO,!)]. 

X a 55 ... S transforms with (!,O) a> (O,!), and we can carry out 
similar arguments as in (a) for the multiplicities of the 
representations. 

(c) The diagram [r,r - k], ° < k < r, k = even, are stud
ied in a similar way. 

(d) The diagram [r,r, - k], 0< k < r, k = odd, follows 
techniques similar to case (b), but here the condition 
(yIL)apXPs ... s = ° eliminates representations of lower spin. 

IV. CONCLUDING REMARKS 

In the preceding chapters we have achieved a detailed 
analysis of the BWE from the group theoretical point of 
view: the decomposition ofmultispinors, carrying a irreduci
ble representation of the conformal group, in terms of ten
sors of the Lorentz group contained in the conformal group; 
closed formulas for the symmetries of these tensors and the 
equations of motion of elementary systems associated with 
irreducible representations of the Poincare group20; the rela
tion between the BWE and the Pauli-Fierz equations for 
integer spin and the Rarita-Schwinger for half-integer spin 
particles. Although BWE are restricted to totally symmetric 
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multispinors, in our analysis they have been extended to 
multispinors of mixed symmetry corresponding to all al
lowed Young diagrams. 

The above study is obviously necessary to attack the 
problem of covariant Lagrangians of elementary systems of 
arbitrary spin. The Lagrangian with first order derivatives of 
the tensor fields with the help of auxiliary field have been 
obtained by Singh and Hagen21 for massive particles of arbi
trary spin and by Fronsdal22 for massless particles. 

The Lagrangian in terms of the multispinors leading to 
the BWE has been worked out in the case of 3/2-spin parti
cles by Guralnik and Kibble23 with some minor errors cor
ected by Gupta and Repko.24 Another Lagrangian for zero 
spin in terms of 4-rank multispinor has been described by 
Larsen and Repk024; the same authors have introduced gen
eral principles for the construction of Lagrangians with the 
help of irreducible operators of the symmetric group, but no 
closed formulas have been proved for these Lagrangians. 
One thing becomes evident in their analysis: the need for 
mixed symmetry multispinors, the analysis of which has 
been worked out in our paper. Investigations in the complete 
study of the general Lagrangian for the BWE, and their rela
tion to the Lagrangian obtained by Singh and Hagen, are in 
progress. 
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The vector space of tensor operators transforming according to the adjoint representation of the unitary group 
is investigated for arbitrary (even infinite) dimension of the group. In particular, a natural basis consisting of 
generalized number operators is constructed and some properties are studied. The results are applied to the 
construction of mass operators for arbitrary multiquark systems with arbitrary dimsension of the one-quark 
flavor space. It is shown, also, how the proved properties of the spectrum simplify the obtaining of certain 
mass formulas. 

PACS numbers: 11.30.Ly, 12.40.Cc, 12.70. + q 

1. INTRODUCTION 

In the original theory of unitary symmetry, the mass 
operator of the hadrons was assumed to be a linear 
combination of operators which were the images of 
certain tensor operators. These tensor operators 
transformed according to the adjoint or trivial repre
sentations of the group SV(3) (see, e. g., Ref. 1). 

In the quark theory, the mass operator was con
structed by means of a potential which includes all 
SV(3)-invariant combinations; this is in fact equivalent 
to the use of tensor operators of the same type (Sec. 
5). 

It is clear, however, that SV(3) tensor operators are 
not sufficient to describe the masses of the new (e.g., 
charmed) particles. 

The aim of this paper is to investigate the analogous 
tensor operators for arbitrary dimension (even infinite) 
of the unitary group. More precisely, let H be a sep
arable Hilbert space and let H be the space conjugate 
(anti-isomorphic) to H. These spaces can describe, 
for example, the one-quark flavor states. 

We shall denote by 

H Nl'Y!HN2:=H'Y!" '®H@H@" '@B, 

the tensor space which we assume to describe the states 
of the system composed of Nl quarks and N2 antiquarks. 
The natural unitary representation V of the unitary (fla
vor) group V(H) acts in the space HNl 011N2: 

V(H)3v -V (x ® .. ·@x®Y-®"''Y!y-)' 
v 1 N,' "2 . 

=(vx,)0·····0(VyN)' 

where by bar we denote also the mapping B(H)3A-A 
E B(H) between the bounded operators on Hand B which 
corresponds to the assumed anti-isomorphism, i.e., 
AY:=Ay,YEH. 

Let K be a V -invariant (not necessarily irreducible) 
closed subspace of HN10HN2 and let us denote the re
striction of V to K also by V. We shall investigate the 
vector space V(H ,K) of all linear mappings 

m: B(H) -B(K), 

which for any A in B(H) and any v in V(H) satisfy 

m(vAv-l)=vvm(A)V~l. (1.1) 

In other words, the elements of V(H ,K) intertwine the 

representation of V(H) in B(H), defined by the conjuga
tions A -vAv-', with the analogous representation of 
U(H), which is defined in B(K) by means of U •. 

If dimH=n<oo, then the space B(H)=H0H decom
poses under the action of V(n) into the direct sum of the 
adjoint representation of SV(n) and the trivial repre
sentation. So it is clear that for any finite-dimensional 
H the space V(H ,K) consists exactly of the tensor oper
ators mentioned above. 

The simplest example of a mapping satisfying (1. 1) 
for dimH "':00 is the tangent mapping to the representa
tion V restricted to the subElpace K. Let us notice that 
this tangent mapping, say m, can be decomposed as fol
lows: 

Nl N 1 +N2 

~= ~ ~i - i=~+l ::iii , 

where the mappings mi for i= 1, ... ,N, are given by 
the formula 

_ i 
B(H)3A -miCA): =10" ·®10A010··· 

@10/0" .@/, 

where 1: = 1 H is the identity operator in H, and for i 
=N1 + 1, ... ,N, +N2 by the analogous formula with A 
instead of A. Of course (1. 1) implies 

(1. I') 

for any min V(H,K) and A,B in B(H). Unlike the tan
gent mapping, the mappings :iii, i = 1,. . . ,N, + N ~, do 
not transform any V -invariant subspace of HN, 21 HN2 
into itself. But by using the orthogonal projections onto 
V -invariant subspaces we can construct the elements of 
V(H ,K). Namely we have: 

Lemma 1: Let the notation be as above, let Land 1\11 

be V-invariant subspaces contained in K, and let us de
note by the same capital letter the orthogonal projection 
onto the subspace. Then for arbitrary-dimension of H 
the mappings 

(~i: B(H)3A-~~)i(A):=Lmi(A)1\I1, i=l·· 'N, +N" 

(1. 2) 

belong to the space V(H,K). 
Proof: Every mapping::ii l belongs to V(H ,H N'®H'(2) 

because it satisfies Eq. (1.1) on any simple tensor from 
the space H N''Y!H N2. This together with the fact that the 
orthogonal projections Land 1\11 commute with V implies 
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the assertion. 
In the case where L = M the mapping (.e.e)i shall be 

denoted just by .e i . 
Now, let {Xj}jd~~ H be an orthonormal basis for Hand 

let P% be the orthogonal projection onto the vector x . 
.j . j 

By .e j: = .e' (p % ) we shall denote the image of P under 
the mapping .ell. The symbols (.e;m);, ~j' etc. ;Jshall 
have analogous meanings. 

The content of the paper is the following: In Sec. 2 
we obtain for dimH < 00 and for an arbitrary U -invariant 
subspace K the formula which express the dimension 
of the space V(H, K) in terms of Young tableaux. In 
Sec .. 3 we show for dimH ";00 which of the mappings 
(.e~', .e', etc., are linearly independent. Next using 
the results of Sec. 2 we prove that if dimH < 00 then 
these linearly independent mappings together with tri
vial mapping of type B(H)3A -Tr(A)' I form a basis 
for the space V(H,K). In Sec. 5 we show how in the par
ticular case dimH = 3 the mass operators can be ex
pressed as linear combinations of the operators .e l and 
V2;m)~ + (;m.e);. J 

This form of mass operator enables us to interpret 
the mass of hadrons in terms of the number of quarks. 
Namely the images Jel(p.) of one-dimensional projec
tions p. in B(H) have (for dimH ";00) the following inter
pretation: The expression (1JIIJeI(P.)IJI) is equal to the 
number of quarks (or antiquarks) in the state x which 
are contained in the multiparticle tensor state IJI in K 
in the position labeled by i. Of course the total num
ber of quarks and antiquarks in the state x is given by 
"NI +N2 'll'i ( ) 1-1 i~ I "" p., So we can say that the assumption that 
mass operators are built of tensor operators of the 
mentioned above type is equivalent to the assumption 
that the mass of a hadron is equal to the sum of the 
masses of labeled (by position) quarks where the mass 
of a labeled quark can depend on its label. 

In our previous paper (Ref. 2) it was shown that the 
space V(H ,K) is closely connected with the notion of 
general number operators. In fact the mappings Jei 
and (.e;m)i + (mr.e)l are the general number operators. 
In other words, in addition to (1.1) they satisfy: 

Lernrna 2: Let the assumptions be as in Lemma 1. 
Then 

(a) the mappings .ei , Jei, and (.emr)i are ultraweakly
weakly (even weakly-weakly) continuous. 

(b) .e l , Je i , and (.e;m)i + (;m.e)i are positivity preserving 
mappings. 

(c) x,1(I H) = IK and «.e;m)i + (;m.c)i)(I H) = O. 
Proof: 
(a) Let (Ak);~1 converge weakly to A in B(H). Then 

for an~ simple tensor cI> in H NI®H"2, (cI> Iii (Ak)cI» 
;::(<I>mi(A)<I». So the ;iiI are weakly-weakly continuous 
and hence also the mappings .e I, Jel, and (.emr)i. 

(b) and (c) follow immediately from the definitions of 
the mappings considered. 

In this way we try to establish links between the uni
tary flavor group, the postulate of indistinguishability, 
and some postulates of quantum mechanics which we 
used in Ref. 2.to define the general number operators. 

In Sec. 4 we investigate for irreducible L some prop
erties of the spectrum of the operators .e i and next in 

J 
Sec. 5 we show how these properties simplify obtaining 
some mass formulas. In Sec. 6 we prove that every 
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number operator acting in a U -invariant subspace Je of 
H~ (dimH =~) is a linear combination of the mappings 
..c" ;ml, (.e;m)' + (mL.c)i, etc., i = 1, ... ,N. 

2. THE DIMENSION OF THE SPACES V(H K) FOR 
dimH<"" ' 

In this section we shall consider the case 1 < dimH 
= n < oQ. It is well known that if dimH < 00, the natural 
representation of U(n) acting in a subspace of HNIt'?:! HN2 
is equivalent to the direct sum of irreducible represen~ 
tations which act in the tensor space HN with N=N1 

+ (n -l)N2 • (See Ref. 3). Each of these irreducible 
representations is given by the restriction of a repre
sentation of the type 

U(n)3v - U;: = (detv)mU", (2.1) 

with 11'1 = -N2' where by U we denote the natural repre
sentation of U(n) in HN. To avoid misunderstanding of 
the notation in this section, U shall denote only the 
representation in H". It is also clear that the subspace 
K c HN is U -invariant if and only if it is U' -invariant. 

The integer power of the determinant shifts the imag
es of the tangent mapping~. Namely if by iO we denote 
the mapping 

B(H)3A -;ii0(A): = Tr(A)· I HN, (2.2) 

which obv!ouslybelongs to V(H,H N
), then the tangent 

mapping ~' to the representation U' is equal to 

(2.3) 

The representations U and U' define (by conjugation) the 
same representation in B(HN) and therefore for any K 

c H¥ the space V(H ,K) is equal to the analogous space of 
intertwiners obtained by means of the representation 
U'. Therefore if dimH < 00 it is sufficient to deal with 
the spaces H¥ (N arbitrary). 

Notice that in the finite-dimensional case B(K) can be 
identified with K®K, and hence the representation of 
U(n) in B(K) is equivalent to UIK®UIj(, where U is the 
representation contragradient to U. Let K=EfJ:~lLi 
where L; are irreducible subspaces. 

It is clear that to compute dimV(H ,K) it is sufficient 
to know the dimensions of the vector spaces Vij (i,j 
= 1, ... ,p) consisting of all linear mappings which in
tertwine the representation of U(n) in B(H)=H®H with 
the representation acting in L i @ L J' 

In other words for any ~EO V ij and v E. U(n) the fol
lowing diagram should be commutative: 

H9JH----L i 0L j 

v'59v 1 :n 1 Uv ILi 0Uv!:L j ' 
(2.4) 

H fiO H --L . (7J L j :n ' 
The space L i (7J L j is isomorphic with the set of all 
bounded operators from L j to L i . Therefore for any 
~ in V ij we can define the mapping 

~': L/i9HfiOH-L i , 

by the formula 

~'( IJ1 ® x ® y): = ~(x·~ y)1J1 , x EO H , YE H, IJ1 EO L j • 

The commutation property (2.4) of ~ implies that the 
diagram 
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L
j 

I59H 59R--,-.L i 
UvlLj0V0v 1 m 1 uul Li 

(2.5) 

L/i)H'?;JN;r;+L; 

is commutative. 
On the other hand every linear mapping ~' which sat

isfies (2.5) determines by the formula 

an element of Vii" This means that to compute dimV;J 
one should find how many times the irreducible repr'e
sentation U IL . is contained in the tensor product of three , 
irreducible representations: V IL J' the canonical repre-
sentation in H and the one contragradient to it. This 
kind of approach to the probiem is the generalization 
of an idea due to S. L. Woronowicz. 

Let YL be the Young tableau (with N squares) cor-
J 

responding to V IL • It is known that the irreducible 
components of L />9 H are described by all these Young 
tableaux which arise from YL by adding one square. 
On the other hand the represe'ntation of V(n) in R is 
equivalent to the irreducible subrepresentation in Hn- 1 

given by formula (2.1) with m = -1. The Young tableau 
of that representation consists of one column with 
(n - 1) squares and one "negative" column of length n 
corresponding to (detv )-1 • To decompose the tensor 
product of any irreducible representation, say acting in 
L, with the representation acting in R one should add to 
YL (n -1) squares (each square to a different row) and 
next subtract one full (i. e. , of length n) column. 

We shall consider separately two cases: 
(1) No square is added to the last row of YL • This C2.n 

be done in a unique way with arbitrary YL • 

(2) A square is added to the last row of YL • This 
can be done unless YL is a rectangle with n squares 
in each column. In the first case we have two possibil
ities. 

(1a) YL contains no full column. Then we obtain the 
Young tableau which has one additional column with 
n - 1 squares and one additional "negative" full column. 

(1b) YL contains at least one full column. Then we ob
tain the Young tableau which arises from YL by sub
tracting one square from the last full column. 

The second case provides, in general, a set of Young 
tableaux but all these tableaux arise from YL by sub
tracting one square from columns that are not full. In 
fact if we add one square to the last row then to obtain 
a proper Young tableau we have to add other squares in 
the same column until it becomes full. Next this column 
is subtracted and the other additional squares repro
duce YL up to one square. So we see that L 9)H con
tains all irreducible representations with the Young 
tableaux which arises from YL by subtracting one square 
and possibly the representation described in (la). This 
result enables us to prove a lemma which generalizes 
the results of Ref. 2. 

Lemma 3: Let H"'-:JK=(f)fo1Li and let d(L;) denote the 
number of different components in the signature of the 
irreducible representations V I L . • Then dim V(H , K) 

=6:=16:=1 dimVij , where the di'mensions of ViJ are 
given by the following formulas: 

(0 If VI L . is equivalent to VI, then dimV.j=d(L.) 
J .v i 1. 1. • 

(ii) If V IL J is not equivalent to V IL i then 
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(a) dimVij = 1 if YLi arises from YLJ by shifting one 
square. 

(b) dimVij = 0, otherwise. 
Proof: As was already mentioned, dim Vij is equal to 

the number of different possibilities of obtaining from 
YL the Young tableau YL . by means of the procedure 
de~cribed above. • 

First let us notice that the representation obtained in 
(1a) is realized in the space H(N +1) + (n -1) '" HN and there-
fore it does not lead to any V IL i . 

So we can only add and subtract squares. There are 
exactly d(L

j
) different possibilities to add one square 

to Y
L 

• Each such possibility leads back to the same 
younk tableau only if we subtract the added square. 
Hence we obtain (0. By adding and subtracting one 
square we can shift at most one square. Moreover 
there is only one possibility to obtain from a given YL . 

a Young tableau which differs from YL by the position
J 

j 

of one square. This ends the proof of (ii). 
Corollary: If dimH=n>N, then dimV(H,K) does not 

depend on n. 
Lemma 3 enables us to compute how many times the 

adjoint representation of SU(n) occurs in V I K 0 IT I if for 
reducible K=(f)f=1Li' Namely, let us denote this mul
tiplicity by mT and let mw denote how many times the 
trivial representation of V(n) occurs in the above tensor 
product. Of course dim V(H ,K) = mT + mw' But mw can 
easily be computed because the trivial representation 
appears in L/i9£i only if VILi '" VI LJ ; e.g., if all spaces 
L i are different, then m w = p. 

So, Lemma 3 is a generalization of a result from Ref. 4. 

3. THE TENSOR OPERATORS jl"iAND (2"A')i 

In the case dimH = OQ the description of V -irreducible 
subspaces inH N1'?;JR"'2 was done in Ref. 5 by general
ization of the classical results of Weyl. 3 Namely, be
sides the natural representation V of U(H) in HNlQ9 RN2 

there is a representation r of the Cartesian product of 
permutation groups P N1 X P N2 which commute with V: 

P N1 x P N2 3(p, a) - r~~O(Xl 00' .. 59X"'1 00 YNl '159' " 59 YN) 

(3.1) 

The representation r permutes labels of particles and 
antiparticles separately. 

According to the results of Ref. 5, every U -invariant 
subspace KcH"19) JjN2 has the form K=K l 59K2, where 
K1 C HNl (resp, [{2 c JjN2) is an invariant subspace under 
the natural action of U(H) in HN1 (resp. in JjN2). 

Any irreducible subspace L = L 1 9) £2 in K is an image 
of a minimal Young projector which can be built by 
means of the representation r. So, L is labeled by two 
Young diagrams: one corresponding to an irreducible 
representation of P N1 and the other to an irreducible 
representation of P N2' By the Young diagram of P N 
we mean a Young tableau consisting of N squares which 
are labeled in an arbitrary way by integers 1,2, ... ,N. 

Now notice that for i = 1,2, ... ,N1 the images of the 
mappings (.c:m)i, .c i , etc. (L, M C K), act trivially on K2 

and for i = Nl + 1" .. ,N1 + N2 they act trivially on K 1 • 

Therefore independent of the dimension of H it is suf
ficient to investigate the properties of the intertwining 
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mappings (.£;m)i,.£i only in the case N 2 =O. 
In what follows, K shall denote a U -invariant sub

space of HN (dimH cSoo), r the representation of P N in 
HN, and II the analogous representation of PI{ in the 
space B(H)N: =B(H)®'" 'is!B(H): 

P N3a- II~I(Bl ® .. ·®BN)=Bcr1 ®·· '®BcrN,B i E B(H), 

i=I, . .. ,N. 

One can check that IIcr(B) = rcrBr~l, for aE P Nand B 
E B(H)N. Now let J by any subset of the set {I, 2, .. , 
N}, let IJI denote the number of elements in J, and let 
P J denote the corresponding subgroup of P N' 

By A J (resp. S J) we shall denote the antisymmetrizer 
(resp. symmetrized in the indices belonging to J: 

AJ:=-I 111 L sgna·rcr · 
J . crEPJ 

Similarly, 

(lJ:= I)I! L sgna·IIo(resp. SJ) 
crE PJ 

denotes the antisymmetrizer (resp. symmetrized act
ing in the space B(H)N. 

Lemma 4: For any B in B(H)I{ and any set J c {1, . 
N} 

(a) AJBAJ = SJ(B)AJ=A J S J(B) , 
(b) SJBS J = SJ(B)SJ=S.,SJ(B), 
(c) AJBSJ = (lJ(B)SJ =AJ(l.,(B) , 
(d) S.rBAJ = (lJ(B)A.r = SJ(lJ(B). 
Proof: We shall prove only (d). The other proofs are 

entirely similar. For simplicity of notation let us as
sumethatJ={1,2, ... ,m},mcSN. 

Let B=Bl 'is!" 'fX)BN and let 1>=xl ® •. ·®X N , where 
x i is in Hand i = 1 ,. . . , N. 

Then by using the definition of (anti) symmetrizers we 
obtain 

=_1_" sgnp.B I fX) .. ·®B®B +1 ® •• ·®BN m 1 L.J p pm m 
. pEPm 

= (lJ(B)A J1> • 

But for the antisymmetrical tensor (lJ(B) 

rcr(lJ(B)r~1 = sgna· (1J(B). 

Hence we get 

(l (B)·A =_1_ L rcr(lJ(B)r~lrcr=sJ(lJ(B). 
.r .r m! crEP

m 

This simple combinatorial lemma enables us to prove 
the following: 
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Lemma 5: Let K c HN be the space of tensors anti
symmetrical (resp. symmetrical) in indices belonging 
to the fixed set J, i.e., K=A J (resp. SJ). Then all 
mappings Xi: = K~I K with i in J are equal, i. e. , i ,j 
E J, then X 1 = Xi . 

Proof: For any A in B(H) and any i,j in J, 

SJ(;nI(A))=,sJ(;ni(A)) . 

By using Lemma 4(a) [resp. (b)] withA.r=K (resp. S,,) 
we obtain 

Let Y" be the Young diagram corresponding to an ir
reducible representation acting in L c HN. For any YL 

we can establish a natural one-to-one correspondence 
between the labeled squares of YL and the mappings .£i, 

i= 1,2, ... ,N. Let us divide YL vertically into the 
smallest possible number of rectangles. 

Lemma 6: Let L be an irreducible subspace. Then 
the mappings .£1 corresponding to the squares from a 
given rectangle YL are equal. 

Proof: From the construction of the Young projec
tor onto L (e. g., first symmetrization and next anti
symmetrization) it follows that the tensors in L are 
anti symmetrical in the indices corresponding to the 
labels of YL belonging to the same column. Hence by 
Lemma 5 we get that if i and j belong to the same 
column then .£ 1 =.£i. 

Now, let YL contain two columns of the same length. 
For simpliCity we assume that the squares of these 
columns are labeled by 1,2, ... , m and by m + 1, m + 2 , 
... ,2m. The definition of the Young symmetrizer 
implies that 

L C Sll,m+l} . SI2,m+ 2 }" 'Slm,2m}' 

where SIi, m +i P i = 1 ... m denotes the symmetrizer in the 
indices i and m + i. Hence again by Lemma 5 we ob
tain, e. g., .£ 1 = .£ m +1 whic h completes the proof. 

Our next aim is to show that for i belonging to dif
ferent rectangles the mappings ,ci are linearly indepen
dent. To simplify the notation we shall give the proofs 
only for standard Young diagrams, i. e. , first we label 
the squares of the first column, of the second column 
etc. r, 

Let be as given a standard Young diagram YL with 
columns of lengths r l ? r 2 ? •.. r m ? O. Let J be a set 
of labels corresponding to one rectangle of YL and let 
r be equal to the lengths of columns in that rectangle, 
i. e., Y= Y j for some j from {I, ... , m}. 

Let us take Yl orthonormal vectors from H, say Xu 
X 2 , • •• , X

Tl
' and let us build the following simple ten

sor from HN. 

1> =xl 'is!x2 ®'" ®XYI ®Xl ® .. 'fX)Xr2 ® ... ®xrm ' 

In what follows we refer to the vectors in the tensor 
product as factors, and will talk about their positions. 
For instance Xl is to be found in the first Yl plus first, 
etc. , positions in 1> above. 

Finally let P be the orthogonal projection onto x r • 

Lemma 7: Let L be the irreducible subspace cor
responding to the standard Young diagram YL de
scribed above. Then for any i in J 
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Proof: The definitions of the vector <I> and the map
pings ~ j imply that 

\

<I> if i belongs to the last row of the chosen 
~1(p)<I> = rectangle. 

o otherwise. 

But from the definition of the symmetrizer SJ and Lem
ma 6 it follows that 

where c is the number of columns in our rectangle. 
Lemma 8: Let L be irreducible. Then the mappings 

i!, I corresponding to squares belonging to different rec
tangles are linearly independent. 

Proof: Let the notation be as in Lemma 7. Let q de
note a number of rectangles in YL and let {i!,ip}~=l be the 
set of mappings corresponding to different rectangles. 
We want to prove that if L)~=1 api!,lp= 0 then all a p are 
equal to zero. 

Let us assume first that al ;< 0, i. e. , 

We shall show that this leads to a contradiction. To this 
end let us introduce the nonzero tensor lJI: = CL <I>, where 
CL is the Young symmetrizer corresponding to YL" One 
can easily check that if by A J1 , • •• ,AJ m we denote the 
antisymmetrizers corresponding to different columns 
of YL then lJI=A J ·A J " ·AJ <I>. 12m 

NOW, let PI be the projection onto XiI and let J I be a 
set of labels belonging to the first rectangle. From the 
definition of the tensor lJI it follows that x

r1 
can appear 

as a factor only in pOSitions labeled by J I • . Therefore, 
since the Xi are orthogonal we get 

II 1: ap.c1p(PI)lJI=0. 
/>=2 

On the other hand by using Lemmas 4, 6, and 7 we ob
tain 

£i1(p )lJI=LS (~it(P»A .. ·.A. 4> 
1 Jl 1 J1 -". 

=LA J1 ·••• .AJmSJl(~jl(Pl))<I>= (1/r1 )<I>· 

So we have a contradiction; and a 1 = O. Next in a simi
lar way we examine the equation i!,i2= (1/a2)6!=3api!,ip, 
and instead of the projection onto x

rl 
we take the pro

jection onto x
T 

where r
i 

is equal to the lengths of col
umns in the s~cond rectangle. Going on we obtain the 
result in q steps. 

Lemma 9: Let dimH = n < 0() and let L be an irreducible 
subspace of HN. 

(a) If the length r 1 of the first column in YL is equal 
to n then the mappings of £i, where i corresponds to 
squares belonging to different rectangles, form a basis 
in the space V(H ,L). 

(b) If r 1 < n then the space V(H,L) is spanned by the 
mappings £i mentioned in (a) and £0 given by the re
striction of ~o [see Eq. (2.2)] to L. 

Proof: Using the results of Lemma 3 part (i) we see 
that in the case (a) dim V(H, L) is equal to the number 
of rectangles in YL and in the case (b) we need one map
ping more. But if r1 < n then there exists a vector X in 
H which is orthogonal to all vectors xl>x2" •• ,X'l which 
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are used in Lemma 8 to build the vector lJI. Let P de
note the projection onto x. Then for any i, i!, I (P)>l1 = 0 
whereas i!,O(P)>l1 = >l1. Hence it is clear that in the case 
(b) i!, 0 is lfnear ly independent of all i!, i • 

Now we shall consider the reducible case. Without 
loss of generality we can assume that K = L + M where 
Land M carry irreducible representations. According 
to the results of Lemma 3 part (ii)-(a), it is sufficient 
to consider the case where YL differs from Y M by shift
ing one square and to construct besides the mappings 
£ i and ~ two linearly independent elements from 
V(H ,K). 

To simplify the notation we shall describe the result 
in the following case. Let Yr. be a standard Young dia
gram and let Y M be a Young diagram which arises from 
YL by shifting up one of its squares (together with the 
label of the square). Let s be the label of the shifted 
square and let r be the number of the row in YL to 
which this square belongs. 

Lemma 10: Let dimH :Suo and let the notation be as 
above. Then 

(a) (.cm)S and (m.c)S are nonzero mappings belonging 
to V(H, K). 

(b) The set of mappings (.cmt)S, (mti!,)S, i!, i ,~i, where i 
(resp j) labels the squares which belong to different 
rectangles of YL (resp. Y M)' is linearly independent. 

Proof: Let <I> be the vector constructed in Lemma 7, 
let P denote the projection onto Xr , and let C L (resp, 
C M) denote the Young symmetrizer corresponding to 
YL (resp. Y M)' We shall show that 

(C M<I> 1 Qrri!,)S(p)CL <I» = 1 . (3.2) 

To this end let us denote by AJ
o 

the antisymmetrizer 
corresponding to the column which contains the label s 
and let J~: =Jo - {s}. Now note that 

~1(P)AJo<I>=AJo <I>. 

Hence by using Lemma 4 we obtain 

Qrri!,)S(P)C
L 

<I> 

=M~i(p)A ···A ... A <I> JI Jo J m 

=MA J1 .. ·AJa ··· AJ .. <I>=Mif>. 

The last equation holds because the tensors from M 
are antisymmetrical exactly in the indices correspond
ing to J u ' .. J~, . .. J m • So, the left-hand side of (3.2) 
is equal to (CJ/if> IM<I»= (CM<I> I <I». But CM<I>=A~<I>, 
where by AM we denote the product of all antisymmetri
zers corresponding to columns of Y M and by S we denote 
the symmetrizer corresponding to the row of Y JI to 
which the square was shifted. The expreSSion S<I> is 
equal to a linear combination of different simple ten
sors of which all but one (equal to if» have the following 
property: The factors in the position labeled by s are 
vectors orthogonal to xr • Also the action of AM on these 
simple tensors cannot put in the position labeled by s 
the vector x" because we have shifted one square up 
and AM can put in this position only factor vectors Xi 

withj< r. Therefore 

(CMif> I <1»= (AM<I>I<I» 

Similarly with AM' since every nontrivial per
mutation of factors Xi in <I> which arises under the ac-
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tion of A., leads to a product which is orthogonal to <1>. 
Hence 

(A.,<I> 1<1»=(<1> 1<1». 

Now, because Land M are Hermitian projectors it is 
clear that 

(C L <I> 1 (.c~s(P)C M<I>)=1 , 

which ends the proof of Lemma 10 part (a). Now, be
cause L is orthogonal to M, (b) follows from (a) and 
Lemma 9. 

The Lemma 10 and Lemma 3 part (ii) imply the fol
lowing corollary. 

Corollary: If dimH < 00, then the mappings (.c ~s, 
(m.c)S,.cD ,;mo, .c i ,mJ , where i (resp. j) correspond to dif
ferent rectangles of YL (resp, Y1/)' span the space 
V(H,lO. 

It is also clear that all other mappings (.c;m)k, 

with k * s, are proportional to (.em)S, i.e., (.e~k 
=CkS(.e~s. It seems to be awkward to find explicit for
mulas for the C ks' In general some of the constants are 
equal to zero. However, because L is orthogonal to 
M, 6 :=1 (.e:m)k = ° on the space K. This sometimes 
enables one to compute the cks by using the generaliza
tion of Lemma 6 for the reducible case. 

4. THE SPECTRUM OF THE MAPPINGS2'i 
J 

Let K be a U -invariant subspace of H" (dimH ~oo) and 
let P x be a projection onto an arbitrary direction x in 
HN. According to Eq. (1.1), the spectrum of all oper
ators Jei (p,), where i is fixed and x runs through all 
HN, does not depend on the particular choice of x. 
Moreover one can easily check that to know the eigen
values of Jei (Px ) it is sufficient to investigate the spec
trum of its restriction to some finite-dimensional sub
space of K. 

In what follows we shall look at the properties of the 
spectrum of operators .e;: =L':if.I(Px.lL, i= 1, ... ,N, 
j= 1, ... ,n, where L carries an i;reducible repre
sentation of U(n), and {x iY;= 1 is an orthonormal basis in 
H. 

Let Ct = (au . .. ,a), where Ct 1 '? a 2 ? ... Ct n ? 0 and 
6~'=llYi =N, be the signature of the representation U IL 
corresponding to the basis {xj};;u i. e., Ct is a function
al on the vector space consisting of (n x n) matrices 
which are diagonal in the basis {X i };=1 (choice of a Car
tan subalgebra).6 

Without loss of generality we can assume that an = 0. 
In fact, such a situation can always be obtained if L 
arises by restriction from the infinite-dimensional 
case. On the other hand, if dimH < 00 and an> 0, then 
the spectra of the .e; arise from the case an = ° by 
shifting by an integer [compare (2.3)]. 

Let La denote a weight subspace of L corresponding 
to the weight f3 = (f3u ' •• ,f3n). By using the definition 
of the weight space and the property (1. 1 ') one can see 
that every operator .e; is reduced by all orthogonal pro
jections L8 onto weight spaces LB' 

Moreover ,it seems that for any i the spectrum of .e ~ 
is rational. We shall prove this assertion only for a 
particular case, but the generalization seems to be 
only a tec hnical problem. 

Lemma 11: For any irreducible representation U 1 L of 
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U(n) with signature a where Ct i ? ° and 6;=1 Ct i =N, the 
spectrum of all £~, i = 1, .•. , N, j = 1, ••• ,n is rational 
at least on the weight spaces La with dimLa< 3. 

Proof: Let YL be a standard Young diagram cor
responding to Cl'. For any f3= (f3u ' •. ,f3n) we take f3, 
basic vectors Xu f32 basic vectors x 2 , etc., and for a 
fixed j = s we build a simple tensor <I> E HN with two 
prope rties: 

(j) the positions of factor vectors x in <I> are labeled s 
first by labels of the last row of the first rectangle in 
Y L , next by labels of the last row of the second rec
tangle, etc., until all available f3s copies of the vector 
x. have been used up. 

(ii) the vectors Xi with j * s are distributed in such 
a way that for the Young symmetrizer Cr. it is true that 
>¥:=CL<I> *0. 

In other words the vector \{I is built according to 
the Young diagram YL with the additional require
ment that vectors Xs are positioned on the bottom 
of YL (see Fig. 1). One can easily check that for any 
f3 at least one such vector can he constructed and that 
\{I E Lac L. It is also clear that to obtain \f! it is suf
ficient to symmetrize the rows in which vectors Xs oc
cur only in those parts which lie at the bottom of a 
rectangle. This is because two identical vectors may 
not lie in the same column, for the antisymmetrizer 
will annihilate suc h a contribution, 

So, w=CL <I>=AL5L <I>=AL '51<1> where 5L is the pro
duct of symmetrizers corresponding to rows of YL , and 
51 is the smaller symmetrizer described above. Now, 
let J be the set of labels from one rectangle and let J' 
cJ contain the labels of the last row of our rectangle. 
Using parts (a) and (b) of Lemma 9 we obtain: 

~)i~<I>=AL ~ il~Sl<l>=AL ~ ;jiisS1<l> 
iEJ iEJ iEJ' 

=ALS1 L: ~~ <I> = mAL 51 <I> = m\{l , 
iEJ

I 

where m is the number of places in the rectangle oc-
cupied by factor vectors xso Figure 1 shows the case 
where m is less than the length of the bottom of the 
right most rectangle containing some x s' This is a 
generalization of Lemma 7. 

2 

3 

~~------ ~----_/ 
f3, 

FIG. 1. f3 s is the number of factor vectors Xs in CP. m. the 
number of places occupied by Xs in the right most rectangle 
containing some xS' 
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On the other hand, for i in J Lemma 6 implies 

1 ,,- m 
£~ = iJTL £.J m{Lw= IJTW' 

jEJ 

So in every weight space Ka there exists at least one 
eigenvector with a rational eigenvalue. 

If dimL B = 2 then we know that the vector lJ1i which is 
orthogonal to W is also an eigenvector: Hence (for 
IIW'II = 1) we have 

A=(W'ILm!¥)=IIi!wl 11 2
• 

But the vector ¥ can be obtained by orthonormalization 
from IJI and an arbitrary (linearly independent from IJI) 
vector WI = C L <1>1> where <1>1 is a simple tensor which is 
built from {31 vectors Xl' f32 vectors x z, etc. Next one 
can check that this construction always leads to a ra
tional A. The next Lemma is very useful for computa
tion of eigenvalues of £~. 

Lemma 12: Let the notation be as in Lemma 11. 
(a) Let W be the Weyl group acting on the weights 

as follows: for w EO W~ Pn, w{3: = ({3w-1 (1)" •• ,i3w-l (n». 
Then for a fixed i and any IV EO W the set of eigenvalues 
of all operators .£~ ,j = 1, ... ,N connected with the 
space LB is equal to the analogous set connected with 
the space L wB' 

(b) Define, for any A in B(L), Tra (A): = Tr(LaALa). 

Then 6~~1 Tra (.C~) = dimL8, i= 1, ... , N. 
(c) For any weight {3, let (3w: = {w{3 : w EO W} denote the 

orbit of (3 under the action of W. Let 1(3 w I be the num
ber of elements in (3w, let L ~: = EB waEtlwL wa' and let 
Trf(A): = Tr(L~L'!i). 

Then for any i and j 

n' Tr~(.e~)= lewldimLtl . 

(d) Let dimH=n>2 and let dimLa =1. Let wwa in 
Lwa denote the normalized vectors corresponding to the 
orbit {3w. Then for any i andj 

Proof: 
(a) The definition of the weight space implies that Ls 

is spanned by simple tensors from HN in which the 
basic vector Xj is contained as a factor f3 j times (j 
= 1, ... ,n). Hence for any w in W the operator £,; 
has on La the same eigenvalues as L~(i) on L wtl ' The 
assertion is implied because w determines a bijection 
between coordinates of (3 and w(3. 

(b) The equation follows from 6 ;=1 £,; = £,i(J H) =1 HN. 

(c) First we shall prove that for any jand k the oper
ators £, ; and £, ! have the same spectrum on the space 
L1£. In fact, for any j and k there exists a Wo in W such 
that j = wo(k). But for any w in W the spectrum of £, ~ 
on the weight space Lwa is equal to the spectrum of 
£j =.,e~ (.l) on the space Lw wB [compare (a)]. Moreover, 
'f 0 a 
1 W runs through all the group W so does wow. Hence 
we get 

n' Trr(£,;) = Trf(t £'~)=Trf(IHN)=dimLW 
= lf3 w I . dimLa • 

(d) We know that if dimL8 = 1 then for any i and j 
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(W wa 1£';Wwtl)=(wal£,~-l(i)Wtl). 

Now, if n> 2, then for given j the permutation group P n 

"" W can be divided into pairs in such a way that for any 
pair, say (Wl>w z) it is true that W~I(j)=W?(j) and, 
sgn(w 1 ) = -sgn(wz)' Therefore, independent of the 
eigenvalues of the operators £, ~-l(, l> 

wEW 

In the next section we shall see that for dimB = 3 Lem
ma 12 part (c) immediately implies the Gell-Mann mass 
formula, whereas (d) yields the Coleman-Glashow mass 
formulas (see, e.g., Ref. 7). 

However, if we want to consider similar mass for
mulas for multiquark systems with dimB> 3 then we 
need some generalization of Lemma 12 part (c) and (d). 

Let W' be any subgroup of the Weyl group Wand let 
{3w', L~', etc., have similar meanings to the symbols 
connected with W. Using the isomorphism between W 
and P n let us divide the set {I, 2, •.. ,n} into two dis
joint parts J 1 and J 2 , where J 2 consists of these num
bers which are not permuted by elements from W'. Of 
course J 2 can be an empty set even if W' is a proper 
subgroup of W. On the other hand if W' consists only 
of the identity, then J 1 is empty. 

(c ') Let the notation be as above and let .,e~ be equal to 
zeroonLr' foranym inJ2 andanyi=I,2, ... ,N. Let 
n1 denote the number of elements in J 1 • Then for any 
j in J 1 and any i= 1, ... ,N, 

n l • Trf (£, ~l= dimLf = l.sw' I . dimLa . 

PYoof: In the same way as in Lemma 12(c) we prove 
that for any j and k in J 1 the spectra of the operators 
£,~ and £,~ are equal on the space Lr. Next using the 
assumption about the operators £,~ with m in J 2 we ob
tain the result as in Lemma 12(c). 

The assumption about £, ~ with m in J 2 holds if in all 
weights w(3 withw in W' the coordinates labeled by ele
ments from J 2 are equal to zero. In fact, in such a 
case the operators ji are equal to zero on the space 
L~', and hence also the operators£'~,i=I, ... ,N. 

The last Lemma implies also a generalization of (d) 
from Lemma 12. 

(d ') Let WI be a subgroup of W which is isomorphic 
to some permutation group, Le., W1=P

nl
• Letnl 

> 2, let J 1 ,J2 have the similar meaning as above, and 
let £, ~ with m in J 2 be equal to zero on L~l for any 
i=I, ... ,N. Finally let dimLa=l, andletww8 denote 
vectors corresponding to the orbit (3w1 • Then for j in 
J 1 and arbitrary i, 

Proof: Let W' be the subgroup of WI consisting of aU 
even permutations. The assumption n1 > 2 implies that 
W' is not trivial. Then according to Lemma 12 (c ') we 
have for j in J 1 and arbitrary wa in Wu 

T W'( i)_ dimL~' r B £', - n, i=I, . .. ,N 

(4.1) 
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Hence for dimLB = 1 and an odd permutation W o from 
WI we obtain 

L sgn(w)(>J!wB 1.c;>J!WB) = Tr~'(..c;) - Tr::B(.c;)= O. 
WEW1 

Let us note that Eq. (4.1), which holds for any dimen
sion of L8, can be used for a generalization of the Cole
man-Glashow formula for weight spaces L8 with dimL8 
>1. 

As was mentioned in the beginning of this section all 
the results can be extended to the infinite-dimensional 
case (dimH = 00). In such a case we start with the per
mutation group P n (with sufficiently large n) which per
mutes n ordered basic vectors from H. This group 
gives rise to the Weyl group if we restrict an irredu
cible representation of U(H) acting in L C HN to tensors 
which are built only by means of the n chosen basic 
vectors. In this way we can obtain for dimH=oO equa
tions similar to those in Lemma 12 holding on 
some finite-dimensional subspaces of L. 

5. THE MASS OPERATORS 

In this section we shall show how to express some 
mass operators used in the theory of unitary symmetry 
or in the quark model by means of general number oper
ators and next how this form of the mass operators sim
plifies the deduction of some mass formulas. 

We assume that the orthonormal basic vectors in H, 
say {Xi}~!"iH, correspond to the different quarks; e.g., 
if dimH=4 the vectors X U X 2 ,X3 ,X4 correspond to the 
quarks u,d,s,c. In other words we describe the quarks 
u,d, etc., as different flavor one-particle states. 

For any representation (multiplet of particles) K in 
H"I ®IlN2, the operator of baryon number is proportion
al to the identity operator 

B=[(N1 -N2 )/3] 'lK , 

and the operators of charge, third component of iso
spin, strangeness, and charm can be expressed in 
terms of operators related to the number of quarks in 
the following way: 

Q =:Jl1 - B, 13 = ~(:JlI - :J1,), 5 = ~, C = it4 . (5. 1) 

First we shall consider the baryon case; i. e., let L 
be an irreducible subspace of HN. We claim that the 
Gell-Mann mass operator with electromagnetic cor
rections can be expressed in terms of general number 
operators as follows: 

dimH N 

G= L L m~..c;, 
,=1 i =1 

(5.2) 

where to the constant m~ can be given the interpretation 
of the mass of the quark in the state x, which is con
tained in the multiparticle tensor state from L in the 
position labeled by i (compare Sec. 1). 

The formula (5.2) can be used even if dimH =00 be
cause the properties of the spectra of the operators 
..c; imply that the infinite sum is convergent, e. g., in 
the strong topology. 

For the established baryons (N = 3, dimH = 3) we see 
that formula (5.2) contains 9 constants, whereas the 
usual Gell-Mann mass operator with electromagnetic 
corrections contains at most 5 constants. 
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In what follows we shall reduce the number of con
stants in (5.2) and shall show that, in general, agree
ment with the experimental data can be obtained only 
if the mass of a labeled (by position) quark depends on 
its label and the choice of the space L (i. e., is differ
ent, e. g., for octet and decuplet of baryons). 

Although the operator G given by (5.2) contains so 
many constants we prefer to start with this form be
cause it does not distinguish any direction in H and any 
kind of labeling in Young tableaux corresponding to L. 
We shall show also that formula (5.2) enables us to 
obtain very easily the Gell-Mann and Coleman-Glashow 
mass formulas. 

Finally, as was mentioned in Sec. 1, it has a simple 
interpretation in terms of the number of labeled quarks. 

In the case of an octet of baryons (dimH = 3, N = 3) the 
reduction in the number of constants can be done as fol
lows. If to describe the octet of baryons we use the 
subspace L corresponding to the standard Young dia
gram 

then according to Lemma ti the mappings .c l and .c 2 are 
equal. Hence by using the property .c i (I H) = 1L we can 
transform the operator G, for example, into the form 

G=CI..c~+C2.c~+c3.ci+C4.c;+c51L , 

where 

cI=m~+m~-m~-m;, c2=m~+m~-m~-m;, 

c 3 =m{-m;, c4=m~-mL c5=m~+m;-m~. 

(5.3) 

From Lemma 9 we know that in the considered case the 
mappings .c l

, ..c" and .c 0
(' ) : = Tr(· )lL are linearly in

dependent tensor operators from the space V(H, L) 
Moreover, the relations (1. I') and (5.1) imply that the 
operators .e~ and .ei transform like the charge operator 
whereas the operators .e~ and .e~ transform like the 
hypercharge operator. Therefore G given by (5. 3) is 
equal to the Gell-Mann mass operator with electromag
netic corrections. Using (5.3) one can easily check that 
to obtain agreement with the experimental data one 
should assume in the octet case, for example, that mi 
*m~. 

If we neglect electromagnetic effects then the for
mula 

(5.4) 

gives us the classical Gell-Mann operator. Of course 
the operators G and G' commute with the operators Q, 
13 , 5, etc. [see (1.1 ')]. One should, however, remem
ber that in general [.e;,.e~]*O for j *k. (See an example 
in Ref. 2). On the other hand if dimV(H,L).,;:3 then for 
any i, m, andj it is true that [,c~,.eJl=O. In fact, in 
such a case (according to Lemma 9) we can build a basis 
in the space V(H, L) by using the mapping ..c ° and at 
most two of the mappings ..c i , i= 1, ... ,N. Let us de
note these two mappings by .c' and ,c". Then on the 
space L jr = ao..c° + a:C '+ a ".e ", where for the case (a) 
of Lemma 9, a 0 = O. 

Now, because roC;, :-ni ] = [..c;,jr,]=O and .e~=lL' we get 
[.e;,..cj'l=O and hence [.e~,,cT]=O for any i, m, and}. 
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One can easily check that for any three-quark (N = 3) 
or quark-antiquark system (N1 = N2 = 1) the dimension 
of the space V(H ,L) is smaller than 3 independent of the 
dimension of the space H. Therefore the components 
of the classical Gell-Mann operator commute. 

We shall show now that Lemma 12 gives a "mathe
matical background" for the Gell-Mann and the Cole
man-Glashow mass formulas. Namely, Lemma 12 (c) 
implies that for any weight (3 

1 " N - L: L: m~. 
n J=II=1 

(5.5) 

The left-hand side of (5.5) is equal to the average mass 
of particles which are connected with the orbit f3w• So 
we get the following rule: 

For given L the average mass of particles connected 
with different orbits does not depend on the orbit. 

For example in the octet case for the signature a 
= (2, 1, 0) dimLt,O) = 6 and for the weight f3 == (1,1,1), 
dimL~,1,1l=2. Hence we obtain the Gell-Mann mass 
formula with electromagnetic corrections: 

mp+ mN +mr:+ + mr:-+ m7IfJ + m z-== 3(mAo + meo). 

(5.6) 

Putting in (5.6) mp=mN,mr:+==mr:-=mr:o,mz-=mzo or 
equivalently using the operator G' instead of G, we get 
the classical Gell-Mann mass formula. 

Similarly, for an octet of baryons Lemma 12 part (c) 
implies 

which is equivalent to the Coleman-Glashow formula 

(5.7) 

Of course using Lemma 12 case (c /) with W' consisting 
of even permutations of P3 we obtain immediately (n 1 

=n==3) 

, 
(5.8) 

which is equivalent to (5.6) and (5.7). 
Applying Lemma 12 case (c ,) and (d') one can easily 

prove that analogous mass formulas hold independently 
of dimH. For example, if we include quark with charm 
and assume that the mass operator is given by (5.2) 
then for a "twentyplet" of baryons [I.e., a== (2100)]. 
Lemma 12 case (c ') implies that equations analogous 
to (5.8) hold separately four times: first for 8 particles 
with charm C=O, next for 8 particles with S=O, etc. 
It is clear that Lemma 12 parts (c) and (d) cannot give 
any new relations. In the case of a decuplet of baryons 
[Le., a'" (3,0,0) Jwe have ,c' ==,c2 ==,c3. Therefore the 
operator G can be reduced to 

(5.9) 

Because in the decuplet case the operator £I, 1£, which 
gives the total number of quarks in the state x

j
' is 

proportional to .e; we obtain the rule of equidistance 
of the mass between isospin multiplets and a similar 
rule inside the isospin multiplets. In this case Lemma 
12 does not give any new relations. 
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NOW, let us consider the meson case. We shall dis
cuss only the case K = H ® Ii = L EB M, where dimL == n2 

-1 (n>2) and dimM=I, but all the results can be 
easily extended to any reducible subspace K of HNI 

69HN2 • 

We claim that the operator of mass (or of the squared 
mass) for vector (or pseudoscalar) mesons which is 
used in the quark theory can be expressed in terms of 
general number operators in the following way 

n 2 

G= ~ L [A~,c; + !.L~ + v~«,cmL)~ + (m,c)~)], (5.10) 
Jd i=1 

where the mappings (.em)i are given by (1.2) and the 
mappings ,ci and mr by the same formula with L == M. 
Note that for the representation L [1. e., a = (1, 
0, ... ,0, -1)] the mappings.e1 and.(;2 are linearly in
dependent. The assumption that the mass of a particle 
is equal to the mass of its antiparticle is fulfilled iff 

A~=A~=:AJ' !.L~==!.L~=:!.LJ' v~=v~=:vJ' 

Therefore we obtain 

G=t AJ,cJ+ !.LJmLJ + vJ(£:JroJ , 
J =1 

(5.11) 

(5.12) 

where the image of the projection P under the mapping 
• J .e : =,c' +.(;2 (resp. ~rrL=;mt +mL2) counts the total number 

of quarks and antiquarks in the state xJ which are con
tained in a multiquark state from the space L (resp. M), 

while the operators (,cm)} : = (.emL)~ + (,cmL)~ + (m'c)~ 
+ (m.c)~ describe a mixing between the subspaces Land 
1\11. The assumption (5.11) implies also that in this 
case the Coleman-Glashow formula is fulfilled in the 
trivial way: 0'" 0. 

As in the baryon case we can make a further reduc
tion of constants, and if, moreover, we neglect the elec
tromagnetic terms then (5.12) can be transformed into 
the following form 

(5.13) 

One can easily check that the mass operator used in the 
quark theory for mesons (see, e.g., Ref. 8, Chap. 8, 
Sec. 1) is equivalent to (5.13). It is also clear that the 
constant b1 = ~ = m s - mu ' li2 is equal to the mass of the 
pure octet state, b3 to the mass of the pure singlet 
state, and that li4 describes a mixing. 

For vector mesons we have ideal mixing, 1. e., h2 
= b3 =: hand b4 =~. Therefore (5.13) reduces to 

(5.14) 

where K = L EB M, and we see that the mass operator is 
built by means of the total number operator JC = ;ftl + ;ft2. 

In a similar way one can consider the mass operator 
for mesons with charm, and without complicated cal
culations try to predict connections between masses 
of new particles (compare Ref. 9). 

6. GENERAL NUMBER OPERATORS FOR 
dim H=~ 

In the case where dimH = 00 and K is a U -invariant 
subspace of H N

, the space B(H) [resp. B(K)] is not iso
morphic to H!'Y) H (resp. K@R). Therefore we are not 
able to compute the dimension of the space V (H, K) as 
was done in Sec. 2. It is clear, however, that dimV(H, 
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K) cannot be smaller than the number of linearly inde
pendent mappings .e i ,;mi, (.em) I , em.c)i, etc., where i 
= 1,2, ... , N, and L, M, etc., are irreducible sub
spaces of K. But by using the results of Sec. 2 this 
number can easily be computed even if dimH = 00. 

In what follows we shall show that if a mapping from 
the space V(H, K) is a general number operator, i. e. , 
if it satisfies the assertion of Lemma 2, then it is equal 
to a linear combination of the mappings .!!i ,mi , (.em)i 
+ ¢m.e)i, etc., with i= 1, ... ,N. 

This statement is a generalization of the result ob
tained in Ref. 10 and its proof is based on the same 
idea. 

Lemma 13: Let K be a U -invariant subspace of HN 
(dimH=oo), and let ~ be a mapping from V(H,K) satis
fying the following additional properties: 

(a) ~(IH)=C' IK where C is a constant. 
(b) For any closed subspace D of H, ~(iD) '? ° where 

by definition i D acts as the identity on D and is equal 
to zero on Dl (the orthocomplement of D in H). 

(c) ~ is an ultraweakly-weakly continuous mapping. 
Then ~ is a linear combination of the mappings ,ci, 

;mi, (.em)i, (m,c)i, etc. , with i = 1, ... ,N, where L, M, 
etc., are irreducible constituents of K. 

If moreover the mapping ~ satisfies: 
(d) ~ is a positivity preserving mapping, then the 

constants which are in front of the mappings (,cml)i 

and (m,c)1 are equal one to another. 
PYoof: Let F be a closed subspace of HN. Consider

ing FN as the subspaces of HN we can define the sub
space KF :=Kn FN. Using for reducible K the same 
trick which was used in Ref. 10 for irreducible spaces 
one sees easily that for any A in B(H) which is reduced 
by F and for any ~ in V(H ,K) the image ~(A) is reduced 

by K F • A 

Therefore the formula ;nF(B) :=K/Jl.(B)KF , where B 
is in B(F) and 13 is given by 

13x= IBX, for x in F, 

0, for x in Fl , 

defines a mapping belonging to V(F,KF ). 

Now, if we assume that dimF= n < 00 then KF is a di
rect sum of U(n)-irreducible subspaces, say L F' M F> 

etc. , Hence according to the results of Sec. 3 the map
ping ~F is in general a linear combination of the map-

pings (oC F)i, (;mF)i, etc., where i = 0,1, ..• , N, and the 
mappings (.e ~F)i, (mF,cM)i, etc., where i = 1, ... ,N. 

ChoOSing another finite-dimensional subspace E of 
H such that F is contained in E one can check that if n 
was sufficiently large then the constants in the linear 
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combination mentioned above do not depend on F. Let 
uSdenotethembyc~,c~, i=O,I, ... ,N, etc. Nextwe 
use the assumptions (a) and (b) with D = Fl and we ob
tain for a normalized vector q, in K F : 

c = (q, I~(I H)q,) '? (q, 1:rc.(4 )q,) = (q, I~F (IF )q,). (6.1) 

But for i = 0, 

C~.cJ(IF)=C~ • dimF· ILF , c~ .~(IFl=c~dimF 'IMF , 

and, for big dimF, (6.1) leads to a contradiction unless 
the constants c~, c~, etc., are equal to zero. It is also 
clear that the assumption (d) implies that the constants 
in front of (.c ~F)i and (mF.e F)i must be equal. 

So we get that our mapping ~ restricted to any finite
dimensional F is equal to a linear combination of a de
sired form. NOW, because dimF was arbitrary and 
finite-rank operators are ultraweakly dense in B(H) 
the assertion follows from the assumption (c). 
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The asymptotic behavior of ground states of two-electron atoms is investigated. Suppose if;(x I ,x2) 
is the ground state of helium, p(x I) = S if;2(X I'X2) dX2 the corresponding electron density, and f/> (x2) 
the ground state of He+. We show that in the L 2(dx2)-sense, limlx,l~oo if;(x I'X2) [p(x 1)]-1/2 

= f/> (x 2 ), and that if;fp(x I)] - 112 solves for large Ix II the Schrodinger equation for He + in the 
quadratic form sense. The rate of convergence of these limits is also discussed. 

PACS numbers: 31.10. + z, 03.65.Ge, 31.15. + q 

I. INTRODUCTION 

We consider the asymptotic behavior of the ground 
state of a two-electron atom described by the Hamiltonian 

H = _ ~ _ ~ _ Z _ Z + _1_, (1.1) 

2 2 'I '2 '12 
where Z denotes the nuclear charge, 
'; = Ix; I, x;ER3, i = 1,2"12 = IXI - x21. The ground state 
if; which we assume normalized satisfies (H - E)if; = 0, 
where E denotes the ground state energy. if; is taken to be 
positive and is in fact with this convention bounded away 
from zero on compacts. I We denote by f/> (x2 ) the normalized, 
positive ground state of the corresponding one-electron sys
tem satisfying 

( - .:12/2 - Z /'2 - E ~))f/> (x2) = 0, (1.2) 

where E ~) = - Z 2/2 denotes the ground state energy. The 
ionization energy is defined by 

€ = E~I - E. (1.3) 

In this paper we investigate the relation between 
if;(x\>x2 ) and f/> (x2 ). To provide motivation, let us give first a 
simple physical picture. Suppose we look at ¢(X I,x2) with'l 
very large and'2 small. Then the second electron should not 
"feel" the first electron anymore. Hence the wavefunction 
itself should factorize in some sense for, I very large like 

(1.4) 

for some funtion X (x d. 
The purpose of this article is to make (1.4) precise. We 

shall prove the two following results. Letp(x l ) = fV? dX2 

denote the electron density; then 

lim if;(x 1,x2) = f/> (x2), in L 2(dx2)-sense, (1.5) 
r,~oo ~ p(xd 

alSupported by "Fonds Zur Fiirderung der wissenschaftl. Forschung in 
Osterreich," Project Nr. 2740 and Nr. 3655. 

and 

lim f if; (- ~ - Z - E~)) if; dX2 = 0.(1.6) 
r,~oo ~ p(xd 2'2 ~ p(x l ) 

The proof of (1.5) and (1.6) will be based on recently 
obtained upper and lower bounds on the electron density.2 
In Sec. II we shall summarize some of these bounds and give 
a proof of (1.5) based on differential inequality techniques. 
We shall also show that f/> (x2 ) u(x l ) solves the Schrodinger 
equation in the asymptotic region'l large, X 2 fixed, where 
u(x l ) is a function exhibiting the same asymptotic behavior 
as V p. In Sec. III and IV we shall prove (1.5) and (1.6) to
gether with an estimate on the rate of convergence of the 
limits. There we use together with the bounds to p which 
serve as an input, a partitioning technique and some spectral 
analysis related to the work of Combes and Thomas3 and 
Deift et al.4 on decay properties of bounds tate 
wa vefunctions. 

Independently and simultaneously Elliott Lieb and 
Barry Simon5 proved something equivalent to (1.4) for posi
tive ground states of many particle systems using Brownian 
motion ideas. They need as an input also upper and lower 
bounds.6

•
7 For helium their result reads 

(1.7) 

which is equivalent to (1.4). While we get (1.7) [as a conse
quence of (1.5)] only almost everywhere, their result is 
pointwise. For potentials of compact support they recover 
(1.5) and obtain an exponential rate ofthis limit. 

II. COMPARISON METHODS 

In this section we give a simple proof of(1.5) based on 
differential inequalities. As an aside we also show that there 
is a function 
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u(xd = Jet> (X2)¢,(X I,X2) dx2, 

such that for any fixed X 2 

(2.1) 

I [lIet> (x2)u(xdJ [(H - E)et> (x2)u(xdJI = 0 (lIr~/2) 
(2.2) 

as rl-oo. 
For the proofof(1.5) and (2.2) it is necessary to describe 

some of the bounds obtained in Ref. 2 together with some 
remarks on their proof. In Refs. 2 and 8 the following differ
ential inequalities for V p and u were derived: 

Here d is some positive constant. For u(x l ) one obtains from 

Jet> (x2)(H - E )¢'(x I,X2) dX2 

= (- ~ - Z + E)U + J et>¢' dX2 = 0, (2.4) 
2 rl r12 

by estimating the integral f (et>¢'/rd dX2 for rl>ro > 0 from 
above, 

( 
.11 Z-1 d') - -- --+E+ - u(xd>O 2 r _.3/2 ' 

I ri 
(2.5) 

where d' is a suitable positive constant. Note that u(x l ) is 
positive by the positivity of ¢' and et>, and u.;;;; V p by Cauchy
Schwarz. 

To extract from (2.3) and (2.5) upper and lower bounds 
to V p and u, we need the following well known 

Lemma 2.1: Let n be an open subset of JR n, and if 
(a)f,gECO(i1j, J>O, f,g-o as Ixl-ooinil 
(b)J>gVxEiJn 
(c) ( -.1 + WI)g.;;;;O, (-.1 + W2l1>0 in n in the dis

tributional sense 
(d)0';;;;W2';;;;WI 

thenJ>g in all of n. 
For a proof see, e.g., Deift et al.4 

Remark 2.1: Under mild additional assumptions on f, 
g, (d) can be replaced by W2 < WI almost everywhere.9 

The application of Lemma 2.11eads now to the required 
bounds. We only have to find functions VI' V2 such that 

( 
_ ~ _ Z - 1 + E _ ~)VI(XI»O, rl>ro, (2.6) 

2 r l ri 
with vl(ro»fp(ro)] I 12 and ro sufficiently large such that 
- (Z - 1)/ r ° + E - d /1~ > 0; and analogously 

( 
_ ~ _ Z - 1 + E + !!.:...)V2(X d';;;;0, rl>ro, (2.7) 

2 r l ~/2 

with v2(rO).;;;;u(ro) and ro sufficiently large. Note thatp and u 
are radially symmetric functions. This leads to 

Theorem 2.12
,8: For r> a, a sufficiently large 

CJY(1 - dl/vr)e- 2V<r.;;;;u.;;;;Vp.;;;;C+rY(1- d2/r)e- PH, 

(2.8) 

with d l and d2 some positive constants and 
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r= (Z -I)1~2E -1, 

(2.9) 

Since u and V p are strictly positive functions this implies 

l.;;;;v p/U';;;;K (2.10) 

for some constant K. 

Remark 2.2: In Ref, 2 also upper and lower bounds to ¢' 
itself are given which differ only in the pre-exponential fac
tors. The upper bounds to V p hold also for n-electron atoms 
described by 

H(n) = i(- ~- Z)+ i.l, (2.11) 
j ~ I 2 rj i<j r ij 

with r replaced by [Z - (n - 1)]/ ~ 2E - 1 and 

p(x l ) = JI¢,(n)(x I'''xn)1 2 dx2",dxn. Also the lower bounds in 

(2.9) and (2.11) hold for mathematical ground states (no Pauli 
principle) of atoms, if u(x l ) is redefined by 

u(x l ) = J ¢,(n - 1)(X2,,,xn )¢,(n)(x!' .. xn) dx2, .. dxn· In these 

bounds E is given by E(n -I) - E(n), Everything we shall 
prove in this article can be readily extended to these "bosonic 
atoms." But since real atoms obey Fermi statistics these ex
tensions are only of academic interest. 

We proceed to prove (1.5). First we derive a differential 
inequality to V p which is related to (2.3). 

Lemma 2.2: Let E ~I) be the first excited eigenvalue of 
the ionized system described by the Hamiltonian given in 
(1.2); then 

- (.11/2)[p(xdJ I12 + (E(II) - Ebl ))(1 - u2/p)v p 
- (Z /rl)[p(xdl 112 + E[p(xdl 112.;;;;0 (2.12) 

holds in the distributional sense. 
We follow essentially the strategy of Ref, 10 to derive this 
inequality. First we write f¢'(H - E)¢' dX2 = 0 as follows: 

J
¢'(X I'X2)( - ~ - Z - E~))¢'(XI,X2) dX2 + J¢'(X I,X2) 

2 r2 

X( - ~ - Z + _1_ + E)¢,(X I,X2) dX2 = O. (2.13) 
2 rl r 12 

Now let P be the projection operator on L 2(JR6) defined by 

Pf(x I ,x2) = et> (x2) J et> (x2if(x I'X2) dx2, 

and let Q = I - P. Since 

- .12/2 - Z /r2 - E~»Q(E\I) - E~)) 

in the quadratic form sense, we get 

J
¢,(XI,x2)(- ~_.Z -E~))¢'(XI,X2)dx2 

2 r2 

>(E\I) - E~))J ¢,Q¢'dX2 

= (E \1) _ E ~))(P _ u2). 

The second integral in (2.13) is estimated using the positivity 
of the electronic repulsion term and 
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- VptllVp<. - J tP(X I,x2)tl 1tP(X I,x2) dX2·
IO This leads to 

(E\II- Egl)1p - u2) +pl/2( - tll/2 - Z Irl + E)VP<'O, 
(2.14) 

from which (2.12) follows by dividing by V p. 
In order to prove (1.5) it suffices to show 

!~(l - ulVp) = 0 for J [tPlvp - cP (x 2W dX2 

= 2( 1 - ulV pl. First we show that 

liminf(1 - ulvp) = o. (2.15) 

We already remarked that u and V p are radially sym
metric. Suppose now that inf,>a (1 - u2 1 p) = 0> 0 for some 
a > O. Then Lemma 2.1 implies that 

J; <f(r)exp [ - J 2(E + 0) r] wherefis a polynomially 
bounded function. But this leads to a contradiction to the 
lower bound to V p given in Theorem 2.1, thus proving 
(2.15). 

To show lim sup(l - u2lp) = 0 we just apply the 
bounds (2.8) and (2.9). By (2.15) there is for any 0> 0 an 
arbitrarily large afj such that u(afj)1 [p(afj) ]1> 1 - 0. Hence 
using (2.8) and (2.9), we get 

lim _u_ 
',_00 Vp 

. u(afj)(1 - d2lafj)(1 - dl/vrd 
>hm --~~--~~~~~--~-

',_00 Jp(afj)(l-d I/Jafj) (1-d2Ird 

1- d21afj 
= (1-0)---===-

1-dJJafj 
Since we can choose afj arbitrarily large, we get 

(2.16) 

limul Jp> 1 - 0 for any 0> 0 and (1.5) is proven. 

HOO Remark 2.3: There are certain shortcomings in the 
proof of (1.5) as we give it in this section. First, we do not get 
any estimate on the rate of convergence of(1.5). This will be 
achieved with more powerful (but also more complicated) 
techniques in the next section (Theorem 3.1). Secondly, we 
use explicitly the radial symmetry of p and u. For instance 
we have no proof of ( 1. 5) in the case of the hydrogen molecule 
with two fixed nuclei. Accordingly it would be desirable to 
have also bounds on the rate at which V p becomes spheri
cally symmetric in the case of molecules with fixed nuclei. 
Theorem (3.1) however implies some result (see Remark 3.2). 

To conclude this section we want to show (2.2). First we 
note that by (2.4), 

u J C/>tP (H -E)uCP= CP(-- -dx2). 
r12 r12 

(2.17) 

But it was already shown in Ref. 2 that for r l large enough 
and x 2 fixed, 

f 
CPtP u d' 
-dx2<.-+ -u, 
r12 r l ri12 

(2.18) 

d' some positive constant, and therefore 

( u fC/>tP) d
H 

C/> -- -dx2 > - n.C/>u 
r12 r12 ri for fixed x 2, 

(2.19) 
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d H some positive constant. To show an asymptotic bound in 
the other direction we estimatef(C/>tPlrd dX2 by the follow
ing chain of inequalities: 

J C/>tP dx2>J ~ dx2>i ~ dX2 
r l2 r l + r2 r,<;-;: r l + r2 

> 1 (u(r l ) - i. _tPC/> dx2 ) 

r l + J r l r,-"Jr, 

> 1 [u - V p(i cP 2dx2)1/2J 
rl +Jrl r,>J-;: 

> 1 [u-vp(cp(J~)JCPdX2)1/2] 
rl +Jrl 

> 1 {u [1 - cexp( - t3 ;-;:, n, (2.20) 

rl +Jrl 

where c and /3 are suitable positive constants. In the last step 
we used (2.10) and the decay of C/> (x 2 ). From (2.20) we get 
immediately f(CPtPlrd dx2>( l/r[ - d 1rf.12)u for sufficient
ly large r l and a suitable d which proves (2.2). 

Remark: The r- 3
/
2 in (2.2) can be improved to r - G, 

a<2. 

III. PARTITIONING METHODS 

In this and the next section our strongest version of (1.5) 
and (1.6) will be proven. We have 

Theorem 3.1: For lim rl-oo, 

The proof of (3.1) and (3.2) will require many steps 
which, however, might be of interest by themselves. One of 
them follows from some ideas of Refs. 3 and 4 (Sec. IV). 

Let 
uo(xd = (1 + rl)Ye- J20

" Y= (Z - 1)/J2E - 1. (3.3) 

By Theorem 2.1 we have K _uo<.u<.V P<'K +u for some posi
tive constants K _, K +. For aEJR consider the unitary group 
on L 2(JR6): 

W(alf = eiGlnu'f, fEL 2(JR6), (3.4) 

and 

H(a) = W(a)HW(a)-1 

Vuo 2 tl2 Z Z 1 (3 5) =WV1+a-) - -- -- -+ -. . 
Uo 2 r l r2 r12 

Now let 

g(x l) = (V1uoluo)(xd = (- J2E + y(1 + rd-I)xllrl· 
(3.6) 

By Proposition 4.1 (see Sec. IV) the family of operators 
[QH (a )Q-E] - 1 is analytic in a ball la I < 1 + /3, for some 
/3 > 0, Here Q is defined as in the proof of Lemma 2.2. By 
projecting the Schrodinger equation for tP into the ranges of 
P and Q respectively, we get 

QtP = (E - QHQ)-IQ(l/r I2 )PtP. (3.7) 
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Applying W(a), aER, to (3.7) we get 

W(a)Q¢ = [E - QH(a)Q] -IQ(1/rdcPuu~, (3.8) 

where U is given by (2.1). We want to show that rhs of(3.8) 
has a continuous continuation in L 2(R6

) up to la I = 1 and 
that Q¢luo)EL 2(R6

). First we show that 

Q (1Ir12)cP (x2) = Q (1/rl2 - 1/rl )cP (x2)EL 2(R6
). (3.9) 

(3.9) is implied by the following estimates. We split the 
integral 

f( ~- _1_)2cP(X2)dXldX2= f + r . (3.10) 
r1 r12 J"I<2"2 Jr l >2r2 

Now 

f dXI 
<2 -=Kr2 

r,<3r2 ~ 

for some constant K. But cP (x2) decreases exponentially 
showing that the first integral on the rhs of (3.10) is finite. 
For the second integral on the rhs of (3.10) we use 

r ( ~ __ 1 )2 dx 1 

Jr,>2r, r 1 r 12 

< r max[(~- _1_)2,(_1 __ ~)2] dx l • 

)',>2r, r 1 r 1 + r2 r1 - r2 r 1 

By a simple argument these integrals can be shown to behave 
like Kr 1 which again implies the finiteness of the second inte
gral on the rhs. of (3.10) due to the decay of cP (Xl)' 

The above stated analyticity property of 
[QH (a)Q - E ] - 1 implies that it is uniformly continuous in 
I a 1< 1 in operator norm. 

Theorem 2.1 implies that uu~ is uniformly pointwise 
bounded and continuous in I a 1< 1. 

With the aid of(3.9) and the last two remarks it follows 
from (3.8) that (Q¢luo)EL 2(R6) and that 

uo1Q¢= [E-QH(-i)Q]-IQ(1/r I2)cPuluo' (3.11) 

Given this we proceed to prove (3.1) and (3.2) and postpone 
the proof ofthe analyticity properties of[E - QH (a)Q] -, to 
Sec. IV. 

Let 

~O(XI,X2) = (1/rll - 1/r,)cP(x2)u(xdluo(xd, 

~ -Q¢luo = ¢Iuo - [u(xl)/UO(XI)]cP (x2)· 

(3.12) 

(3.13) 

We have [E - QH( - i)Q]-I~ = Q~o. First we prove 
Lemma 3.1: (a) The family of self-adjoint operators 

{H (a):aER 1 can be analytically continued to an analytic 
family of type A.ll 

(b) ~EW1.2(R6), where W 2,2 denotes the usual Sobolev 
space. 11 

Proof For aER we have according to (3.5) and (3.6), 

H(a) - H = ~a21g12 + iag,V I + !adivg, (3.14) 

which is readily seen to be a relatively bounded perturbation 
of -.J I with arbitrarily small relative bound. Since the do
main of H satisfies 9 (H) = 9 ( -.J, -.J 2) = W 2

•
1(R6

) 

b9({ -.J I XI),H(a) - HisalsoH-boundedwitharbitrar
ily small relative bound. Accordingly 
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91(H(a)) = 9(H) = W2
•
2(R6 ),andsince(3.14)obviouslyacts 

analytically on W2.2(R6
) analyticity of type A in!C follows. 

To prove (b) we note first that by (3.9), (3.11), and 
P~=O, 

II [QH( - i)Q + PH( - i)P]~ II < 00. 

Now 

IIH( -i)~11 

(3.15) 

<II[QH( - i)Q + PHI - i)P); II + IIP(1/r12)Q~ II· 
But P (1/r 12)Q is bounded relatively to -.J 1/2 - .J 2/2 
(which we call Ho from now on) with arbitrarily small bound 
and hence, by (a), also with respect to H ( - i). This implies 
~E9 (H ( - i)) = W 1

•
1(R6

). 

Remark 3.1: For further reference we note that 
P (1/ r dQ is a H o-compact operator. (This is well known and 
proven, e.g., in a more general setting in Combes. 13) 

We proceed to prove (3.1). First we note the following 
essentially one-dimensional result. 

Lemma 3.2: SupposejEW1. 1(R3
) andjis radially sym

metric; then lfl <elr for r';pa, a positive, e some constant. 
Proof This follows from the one-dimensional esti

mate 14 Ilyll:, < Ilylllldyldxll, where y denotes an absolutely 
continuous funtiony:R + ---+R. Sincejis radially symmetric 
we note that by standard arguments 15 rj(r) is absolutely con
tinuous and we get flVjl1 dx = fIJ(rj)/JrI2 drdfl, where 
dfl denotes integration over the surface of the unit sphere. 
This implies thatrlfl1<Kllfllll Vjll forsomeconstantKwhich 
proves the assertion. 

From Lemma 3.1 and 3.2, Theorem 3.1 now follows 
readily: Since (plu1 - l)u l Iu~ = s; 1 dX1 and Kl <UIUo<K1 
for some positive constants according to Theorem 2.1, it suf
fices to show (s; 1 dX1)1/1<c!r,. Now f~ 1 dX1 is obviously 
radially symmetric since p, u, and Uo are. We get 

f~VI~ dx1-

fIV,(f~ldX1)1/111dx,=fl 1
1

dxl 
(f ~ 1 dX1 )1/2 

<flV 1~ 11 dx1dx1 < 00, 

since ~E W 1
•
2(R6

). We used Cauchy-Schwarz in the last step. 
Therefore, (S ~ Idx1)1/2 is according to Lemma 3.2 bounded 
by elrl and (3.1) is proven. 

To prove (3.2) we proceed analogously. We have 

fl v{IIV1~ 11 dX1Y/T dX 1 

= II J~, (flv£ I
Z 

dxzy1212 dx, 

<II :'1 V£ 12 dxldx1 < 00, 

since ~EW2.1(R6). Hence (sIV2~ 12dx2)'/2<elr, by Lemma 
3.2. But 
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f ~(- ~- Z -EO) Ldx2 
~p 2 r2 Vp 

= U5!..(f IV:J"12 dX2-f~2dX2-E~)f~2dX2). 
~p 2 r2 

Since S; 2dx2 has been estimated already by c/,.:f, this bound 
to slV I~ 1

2dx2 implies (3.2). 
Remark 3.2: Since Theorem 2.1 holds also for two-elec

tron molecules with fixed nuclei, (3.1) and (3.2) have to be 
weakened for this case to lhs of(3.1) and (3.2) EL I (dxd. 

IV. SOME SPECTRAL PROPERTIES OF ATOMIC 
HAMILTONIANS 

For the proof of Theorem 3.1 we still have to show that 
[E - QH ( - f)Q ] - IQ is a bounded operator on L 2(R6). In 
order to prove this we have to do some spectral analysis of 
the operator family {H(a):aEC}. In connection with decay 
properties of bound states Combes and Thomas3 and Deift et 
al.4 already investigated spectral properties of a general class 
of operators H [f I = eifHe - if, with! some complex valued 
function. Unfortunately their analysis does not cover our 
case! = 11nuo with Uo given by (3.3). However, with some 
modifications which we present below the methods of Deift 
et al. 4 can be adapted to this situation. 

We first state the main result of this section 
Proposition 4.1: (i) a ess [H (a)) C I ZEC: 

Rez;;;.Eg) - (Ima)2Ej. 
(ii) Let l) = E \1) - E bl); then 

a ess [H (a) + l)p ] C I ZEC: 
Rez;;;.min(E~),E\I) - (ImafEll. 

(iii) [E - QH(a)QJ-I isanalyticinafor lal < 1 +fJfor 
some /3 > 0, /3 sufficiently small. 

Remark: We define the essential spectrum following 
Ref. 4: Let A be a closed operator on a Hilbert space K with 
resolventsetp(A ) and spectrum a(A ).adi",,(A) = set of all iso
lated eigenvalues of A with finite algebraic multiplicities. 
a ess (A) = alA )\adisc (A ). 

The proof of (i) and (ii) is heavily based on results of Ref. 
4 (Sec. 3 of their paper). The necessary definitions and lem
mata are collected in Appendix A. The analyticity properties 
of[E - QH (a)Q ]-IQ, which we need for the proof of Theo
rem 3.1, follow then readily from (ii). But first we give an 
immediate consequence of Lemma AI. 

Lemma 4.1: Let A be a closed operator on K with non
empty resolvent set and let 8 (A ) = [,.lEC:thereexist¢E!P(A) 
with (¢,A¢ ) = A, II¢ " = 1 J denote the numerical range of A. 
Then 

(4.1) 

Proof Following Kata ll (p. 267,571) this follows easily: 
For suppose ,.lEN es. (A ); then Definition A.1 implies 

,.lE erA ).Butsincee (A ) is convex (4. I) follows from Lemma 
A.I (ii). 

Remark. Actually a ess (A ) C e (A ) is stated in Kato's 
book, 11 but Kato's definition of a ess differs from the one we 
use here. 
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Next we consider the following class of operators on 
L 2(R6

). Let ii denote H (a), H (a) + l)P, or H D, (a), where 

H D, (a)=WV I - a.J2Ex llrd2 + VOl - ¥l2 + l/rI2 , (4.2) 

with 

VOl = WV I + ag)2 - WV I - a.J2EX/r l f (4.3) 

Note that VOl is - Lil-compact. We shall show that Lemma 
A2 applies to Ii. For this we consider the two-cluster decom
positions of our three particle system (the nucleus is labeled 
by O):DI = [(0,1),(2)), D2 = [(0,2),(1))' D3 = {(0),(1,2)j, and 
introduce the related partition on R6 (see Def. A3) 
IXo,x D,'X D"X D, } with support of X D contained in a region 
where Ix; - Xj I > 1 if i and} are in different clusters of D. 

Note that P respectively VOl are non-multiplicative in
teractions between the particles 0 and 2 respectively 0 and 1. 

Lemma 4.2: 

Ness(ii) = N 00 (H) = uN~ (H), (4.4) 
D 

where N 00 and N ~ are defined in Appendix A. 
Proof we have to check that the assumptions of Lemma 

A2 are verified in our case. The resolvent set of H is obvious
ly nonempty sinceii is obtained from Ho by adding relative
ly bounded perturbations with arbitrarily small bound. This 
implies that g(H) = fiJ(Ho) = W2

•
2(1R6), and also that 

C O(R6) is a core for ii, since the norms IIH¢ II + II¢ II, 
IIHo¢ II + II¢ II are equivalent and C O(R6) is a core for Ho· 

Next we show (i) of Lemma A2. Note first that 
p(ii) Cp(Ho). Hence for zEp(ii) we get 

Xo(z - ii)-I 

= Xo(z - HO)-I + Xo(z - HO)-I(H - HoHz - il)-I. 

(4.5) 

Xo(z - Ho)-I is obviously compact and (ii - HoHz - jj )-1 is 
bounded with implies the required compactness of 
Xo(z - ii)-I. 

The requirement (ii) of Lemma A2 follows by standard 
arguements4

; essentially by working out the commutators 
and by noting that the norms IIJt¢ II + II¢ II, IIHo¢ II + I/¢ /I 
are equivalent [¢E!P(Ho) = !P(H)]. 

According to the different cluster decompositions we 
consider now the operators ii D, where ii D is obtained from 
ii by removing the interactions v d between different clusters 
in D; H D = H - V D' 

Remark: For amplification see also (4.2), (4.12), and 
(4.15). 

Lemma 4.3: 

(4.6) 

Proof By Lemma 4.2 we have Ness (ii) = uN ~ (H). 
D 

Now suppose ,.lEN ~ (ii) and let [un} be a corresponding 
Weyl sequence. We have 

It is straightforward to show that IIvDu n II -+ 0 for 
n~", 
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sUPPU n C sUPPX~: For the multiplicative terms uijlY) ofuD lY 
is either XI' xl,or rd this follows from uijlY)~ for IYI-oo. 
For the projector P it is implied by the exponential decay of 
<P (Xl)' and finally for VOl it holds since 1/(1 + rl)~ for 
rl-oo and since (1 + rdVo, is a - ..1 I-bounded operator 
with arbitrarily small relative bound. Hence 

(4.8) 

from which by Lemma Al the assertion follows. 
Armed with Lemma 4.1 and 4.3 we proceed now to 

prove (i) and (ii) of Proposition 4.1. First we consider the 
operator !(iV I + agf with g given by (3.6). The already re
marked - ..1 I-compactness of VOl implies 

Ness(!(iV 1+ ag)l) = Ness [!(iV I - a~2EXllrdl]. (4.9) 

Lemma 4.1 implies 

0-0 " U(iV, + ag)2) C ! ZEC:Rez;> - (Ima)2E J. (4.10) 

Note that by considering the numerical range of!(iV I + ag)l 
directly we would run into difficulties because we would get 
a y-dependent result. 

Standard analyticity arguments imply now that there is 
no eigenvalue of !(iV I + ag)2 outside the essential spectrum 
since otherwise by letting la I decrease to zero this eigenvalue 
would be in the spectrum of - ..1,. So we get 

o-H(iV I + ag)l) C (zEC:Rez;> - (Ima)2E J, (4.11) 

We consider now 

HD,(a) = !(iVI + agf - Zlr, - ¥1l' (4.12) 

By Ichinose's Lemma we have 

o-[HD,(a)] =o-[!(iV, +ag)l-Zlr,] +R+. (4.13) 

The analysis is as before except that now !(iV I + ag)l - Z I r, 
can have eigenvalues above E gl, so 

o-[HD, (a)] C (zEC:Rez;>min(Ebll , - (Ima)lE)J. (4.14) 

Analogously we find for 

HD,(a) = !(iVI + ag)2 + ( - ..1 2/2 - Z Ir2), (4.15) 

a-[HD, (a)] C (zEC:Rez;>Egl - (Ima)lEJ. (4.16) 

We note that 

o-(H D, (a) + oP) = 0-( [H (a) + op ] D,) C (zEC:Rez 

;>E\'I- (Ima)lEJ. (4.17) 

Finally we consider 

HD,(a) = !(iV, + ag)l - ~L12 + 1/r'2 

= !(iV, - a~2EX/2)2 + ~)\ - ~L12 + l/r'2 
-Hda) + V;),. 

To this operator we apply again Lemma 4.3 and obtain 

O-ess [H D, (a)] Co-ess [!(IV, + ag] 2 - ~L12)Uo-ess [Hda)]. 
(4.18) 

Now by the positivity of 1/r'2 we get e [Hda)]C !ZEC: 
Rez> - (ImafEJ and hence by (4.11), 

o-[HDJa)]C !zEC:Rez;> - (Ima)2EJ. (4.19) 

Combining (4.13), (4.15), and (4.19), Lemma 4.3 gives (i) of 
Proposition 4.1. Proposition 4.1 (ii) follows by noting that 
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the cluster decomposition of H (a) + oP are the same as for 
H (a) except for Dl which is covered by (4.17). Therefore, 
(4.13), (4.17), and (4.19) imply (ii). 

Finally we show that (ii) implies (iii) of Proposition 4.1. 
By Lemma 3. la, (H(a),aEC J isan analytic family oftypeA. 
Now 

H(a) = QH(a)Q + PH (a)P + [P(1/rdQ+ Q(1/rdP]. 
(4.20) 

According to Remark 3.1 the term in brackets is Ho-com
pact and therefore QH (a)Q + PH (a)P is also an analytic 
family of type A; the same holds obviously for Q (H (a)Q
+ P[H(a) + OP]P J. By Weyl's criterion we have 

NesJQH (a)Q + P (H (a)P + oP] = N e" [H (a) + oP]; so (ii) 
of Proposition 4.1 implies that 
[QH (a)Q + PH (a)P + OP - Z ]-' is meromorphic in a for 
Rez < mint [E6'I,Elil - (Ima)2E] with poles when ZE 
o-disc [QHQ + PH (a)P + OP]. Actually since the group 
W(a), aER commutes with P and Q we have for aER, 
PH (a)P + QH(a)Q= W(a)(PHP+ QHQ)W-'(a). From 
this it follows that isolated eigenvalues of PH (a)P + QH (a)Q 
remain independent of aEC as long as they are not absorbed 
in the essential spectrum. In particular, 

(E -[QH(a)Q + PH (a)P + oP]J -'Q =[E-QH(a)Q]-'Q 

is analytic in a for E < E \'1 - (Ima)lE - which obviously 
includes lal< I-provided Eeo-disc [QHQ + PHP]. This fol
lows from the Rayleigh-Ritz principle according to which 
E<min[info-(PHP ),infaiQHQ)] = info-(QHQ + PHP); equa
lity cannot be attained_unless Ptf; = tf; or Qtf; = tf;. Now 

Ptf; = tf; would mean ~P = u which corresponds to the trivial 
case of a two-electron atom without electronic repulsion. 
Qtf; = tf; implies U = 0 contradicting Theorem 2.1. The same 
arguement applies for QHQ + PHP + op. Hence we have 
shown that (ii) implies (iii). This finally completes the proof 
of Theorem 3.1. 

Remarks: (1) With a little more effort it should be possi
ble to give a complete characterization of O-ess (H (aj) as a 
union of paraboloids centered at the various thresholds. This 
more precise result is not necessary however for our investi
gations. Notice that this characterization of O-ess (H (aj) is not 
an immediate consequence of Theorem 4.1 of Ref. 4, since 
the functiong given by (3.6) is not C 00 (R6) outside some finite 
ball in R6

, but rather in R3. 
(2) As already mentioned in Remark 2.2, Theorem 3.1 

and the methods of Sec. 4 extend readily to "bosonic" atoms. 
In fact the method of Sec. 4 is applicable to more general 
situtions but since for such cases we have no bounds as given 
in Theorem 2.1 these results are not very interesting for the 
moment. 

(3) Finally we should mention that if we replace the 
1/r'2 in (1.1) by - A (1/rd with A positive and sufficiently 
large, Theorem 3.1 is not necessarily true. See Ref. 5 for a 
discussion of the factorizability of ground state wavefunci
tons as indicated in (1.4). 
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APPENDIX 

Here we collect the definitions and results of Deift etal.4 

which we needed in Sec. IV. 
Definition AI: Let A be a closed operator on a Hilbert 

space dY. Ness (A ) = {AEC: there exists a sequence Un ED(A ) 
such that lIunll = 1. un-O (weakly) and 11(,,1, -A )unll-oj. 

Lemma AI: Let A be a closed operator on dY with non-
empty resolvent set ptA ). Then 

(i) Ness(A )CO"ess(A) 
(ii) Boundary of 0" ess (A ) C Ness (A ). 
Definition A2: Let A be a closed operator on L 2(RV) (v 

some positive integer) having C t(RV) as a core. N"" (A ) 
= {AEC: there exists a sequence UnEC t(RV) such that 
/lunll = 1,suppunnKemptyforeachcompactKCRV,andn 
sufficiently large, and 11(,1 - A )u n 11-0 as n-oo j. Such a 
sequence will be called Weyl's sequence for A and A. 

Definition A3: A partition of unity in RV is a finite set 

XO'X 1"'Xs ofC 00 functions with bounded derivatives obeying 
s 

O<Xi<l, LXi = l.XoECO'(RV)withXo= 1 on some 
;=0 

neighborhood of O. For 0 < d < 00, x1 denotes the function 
Xi (xl d), and also the corresponding multiplication operator. 

Definition A4: Let XO",Xs be a partition of unity on RV. 
For i = 1, ... ,s we defineN'~ (A) = {AEC: there exists a Weyl 
sequence Un for A and g with suppu n C sUPPX ~ j. 

Lemma A2: Let A be a closed operator on L 2(R") with 

nonempty resolvent set having CO' (R'') as a core. Let XO' ... ,Xs 
be a partion of unity and suppose 

(i) For each d, xg (z - A ) -I is compact for zEp(A ). 
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(ii) For all UEC 0'(R1 and i = O, ...• s. 
\I (A,xnull<E(d)(\lAu\I + l!ul!lwithE(dl-Dasd-oo. Then 

N oss (A ) = N"" (A ) = u N i"" (A ). 
;=1 
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A formal solution is found for the probability amplitude of emission of a photon by an atom 
coupled with the electromagnetic radiation, without the assumption of the rotating wave 
approximation. 

PACS numbers: 31.15. + q, 42.50. + q 

I. INTRODUCTION 

The problem of the interaction of a two-level atom with 
the electromagnetic field was solved more than a decade 
ago, 1.2 using the Dicke model3 under the rotating-wave ap
proximation (RWA). This approximation involves only lo
cally energy-conserving terms, i.e., every time a photon is 
emitted, the atom decays to its lower level and vice versa. 
This assumption results in a probability of emission that var
ies periodically in time and there is a periodical transfer of 
energy from the atom to the field back and forth.2 

In the present work within the electric dipole interac
tion, we do not neglect the counter-rotating terms. In other 
words we consider the virtual processes such as the creation 
of a photon and the simultaneous creation of a quantum of 
energy in the atom, as well as the annihilation of a photon 
and a quantum of energy in the atom. These terms, usually 
neglected in quantum optics, appear naturally in Dicke's 
model. 

II. THE MODEL 

Consider a two-level atom interacting with the electro
magnetic field. The Hamiltonian describing this system can 
be written as·1 : 

,W = wata + wOa1 + fIK (a + at)(a+ + a-), (2.1) 

w here OJ is the frequency of a single mode radiation field, Wo 
is the energy separation of the levels, K the coupling con
stant, a and at the annihilation and creation operators for the 
field, and a 3 , a+, and a-' the Pauli spin matrices represent
ing the two-level atom. These operators obeys the standard 
commutation rules: 

[a3,a±]=±a±; [a+,a-]=2a3 , [a,at ]=1. 
(2.2) 

The R W A consists in neglecting the terms at a + and 
aa- in Eq. (2.1). The usual argument given to neglect these 
terms is the following4

: For K = 0 the Heisenberg operators 
have a time dependence given by a(t ) = a(O)exp( - iOJt ), a tIt ) 
= at(O)exp(iOJt), and a+(t) = a+(O)exp(iOJot). Near reson-

ance (OJ~OJo) the interaction terms aa+ and at a- are practi
cally d-c terms as compared with aa- and ata+ that vary 
rapidly in time at frequencies (OJ + OJo) and average to zero. 
This approximation is equivalent to decomposing a linearly 
polarized electromagnetic wave into opposite circularly po
larized waves and keeping only the one rotating in the same 

sense as the preceSSlOn of the two-level spin-atom. 
Other authors have previously worked on this problem, 

with special interest in the Block-Siegert frequency shift,5 
which arises because of the presence of counter-rotating 
terms in the Hamiltonian. Hioe and Eberly6 included these 
terms to calculate the Block-Siegert shift using a perturba
tion approach (up to the eighth order) by means of the Barg
mann representation. Their results are in agreement with the 
earlier work done by Shirley7 and with the work ofSted
holm,8 who derived a continuous fraction expression for this 
shift from a semiclassical theory. A comparison between 
semiclassical and quantum approaches was made by Swain.9 

In the present work both rotating and counter-rotating 
terms are included in the Hamiltonian. An exact formal so
lution is found in the next section. 

III. THE SOLUTION 
The probability amplitude for the transition from an 

initial state Ii) = In>I~) to a final state If) = In + 1)1-!> 
is given by 

¢> = (flexp( - i:Jrt /1i)li) 

= ! ( - iOJt Y'(fl(JYY'li)/p!, (3.1) 
p~O 

where 

:Jr' = ata + a 3 + (K /OJ)(a + at)(a+ + a-), (3.2) 

and exact resonance (OJ = OJo) has been assumed. 
The term (fl(:Jr'Y'li) can be written as follows: 

(3.3) 

where 

(3.4) 

Each term in (3.3) corresponds to a set of states Ar with 
Ao = f, Ap ~ i, and r = 1 ,2,00.,p - 1. The set! Ar I contains a 
subset (A; I where A; #A ; 'ils# r, with S = 1,2,00.,s", <"p. In 
other words, every term in the summation (3.3) contains s'" 
different states. This subset defines a graph with Son vertices 
and Son - 1 branches in a unique way, and each vertex is 
uniquely associated to a given state in such a way that each 
branch corresponds to a nondiagonal element (Aq pY"IAq' ) 
and each vertex corresponds to a diagonal element (Aq P'!' I 
Aq) . 
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For a fixed value of p, only those graphs with a num
bert(JofverticeslessorequaIthanmax(sm) = INT[(P + 3)/2] 
contributes to the sum (3.3). The corresponding maximum 
number of branches is INT[(P + 1)/2]. Each graph can be 
travelled in many different ways, which we call paths. Each 
path starts at state I i), goes through the vertices or states A I 
tOAp _ l , and finally arrives at state If). We wiIl say that a 
factor (Ai IJY'IAj) in (3.3) corresponds to a "stop" at the 
vertex Ai if Ai = Aj , and to a "step" from Ai to Aj if Ai #Aj • 

In order to simplify the notation we denote the state 
Ii) = In;!> by 10) and the state If) = In + 1; - !> by 11). 
The remaining states in the graph will be associated to an 
integer number according to the scheme shown in Fig. 1. The 
maximum value of this integer is N> 1 and its minimum val
ue is M <:0. The pair (N,M) defines a graph uniquely, and 
since N - M is the number of branches of this graph, the 
following condition is satisfied: 

I<:N - M<:INT[(P + 1)/2]. (3.5) 

There are many possible paths in a given graph satisfy
ing (3.5). Any of these paths can be partially specified by the 
number of steps, which we call m, and the number of stops, 
p - m. Notice that for the initial and final states, Ii) and If), 
given above nonzero contributions exists only for m odd. For 
given values of p, N, and M the possible values of mare 
limited by 

mn = 2(N - M) - 1 <:m<:(p,p - I), (3.6) 

where (p,p - 1) is equal to p or p - 1 according to whether p 
is odd or even, respectively. 

The number of times a given path goes through a given 
state j is called the number of stations corresponding to the 
statej and this number is denoted by Ij • As an illustration 
consider Fig. 2(a) where a typical path is shown in the graph 
(N = 2, M = 0). In this particular example the number of 
stations is given by the set [10 = 2, II = 4, 12 = 21. 

A given path defines the set [Ii I uniquely. However the 
reciprocal statement is not true. This is shown by comparing 
Figs. 2(a) and 2(b). For given set [Ij I there are many possible 
paths. The number of paths for given number of stations is a 
given graph will be denoted by W ([ Ij I). It can be easily 

N· 
~xN-1 

j+1'~. 

3'$:: XJ x2 
l' 

KO 
-1' : 

M+l· ____ ' 
KM~O 

FIG. I. Typical graph with dots (.) indicating the state 10-,) = 1 - P and 
crosses (X) the state 10-,) = 1 + l>. The vertexj corresponds to the state 
In + j;o-z)· Nand M define this graph uniqUely. Note that Nand M may 
correspond to either a dot or a cross. 
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~NC!:: 

oLI 2 

~~!:: 

oL 2 

(0) ( b) 

FIG. 2 (a). A typical path corresponding to a graph (N = 2, M = 0) with the 
set of stations [ I" = 2, I, = 4, I) = 21. (b) Another possible path in the same 
graph and with the same set [/0 ' I" 12 1. as in Fig. 2(a). The set of numbers [10 ' 

1\,/2 ! corresponds to the number of stations at the states 0, 1,2. A given path 
determines this set uniquely. The reciprocal statement is not true. 

shown that set [ Ij I in the graph (N,M) satisfies the constraint 
N 

Ilj=m+l. (3.7) 
j~M 

Another trivial constraint to be satisfied by the set [Ij I 
is 1M> 1, IN> 1, Ij >2 forj#N,M. 

With the above considerations one can easily see that 
the sum in (3.3) can be rewritten as 

(p,p - II 

UI(JY'Yli) = I I I W([ If I 
(NNI [IJI 

m=mn 
oJd 

where in the last summation the indices are subject to the 
constraintql + q2 + '" + qm + I = P - m,aj = K (n + j)ll{J), 
and Sf is the number of steps between the statesj - 1 andj. 
sY, denotes a diagonal element of JY' at the station t, where 
1 <:t<:m + 1. 

Explicit expressions for W ([ Ij I ), Sj and the summation 
over the q's are obtained in Appendices A and B. Replacing 
these results in (3.8) one obtains 

o N, +M P.P- I Z '(Z 1)' 
(f\(JY'Yi) = I I I L o· 0 - • 

M~ M, N~ I _ 1/,/ (2Zo - I)! 
m-nln 

X rrN (Zj - I + Zj - I)! 5
J -'---'----a 

j ~ M + I (Zj )!(Zj _ I - I)! J 

f (A'I YA ,/2I
-

K
,,( p ) 

'1~1" K'l - 1 
X ,. , (3.9) 

2m rr (1] - 1]'t1] 
,( =1" 

'10'1 

where NI = INT[(P + 1)/2], MI = - nor 1 - NI depend
ing on which number is larger, v = INT(N 12), 

f.1 = INT(M 12),1] = INT(j/2), Kn = 12'1 + 12'1 + I' and 
A'l = n + ! + 21]. Also 

N-j 

Zj = I (- l)qlj+q forj> 0, 
q~O 

j-M 

Zj = I ) - In-q forj<:O, (3.10) 
q=O 

and Sj = 2Zj , forj-j= 1 and SI = 2Z1 - 1. 
After inserting (3.10) in (3.1), we can invert the summa

tion over p with all the summations appearing in (3.10), as it 
is shown in Appendix C. This allows us to perform the sum-
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mati on over p as follows: 

ptm( - iwtr(K7IP_ I}~,-K"+ I/p! 

= Am -K,,+ r( - i(J)t )m I ( - i(J)tA 7I )q , 

'I (K7I - I)! q~o(q + m + I-K,,)! 

which can be readily written as 

( - iwt l'" ( m } m - K'f + I F (1 2 .' A ) 
1

" I I ,m + - K 7I , -IW "t , 
m! K 7I -

(3.11) 
where IFI is the confluent hypergeometric function. 

The final result for the probability amplitude cp is given 
by 

cp = ± f f (- i;l'" L Zo!(Zo - I )!/(2Zo - I)! 
M~-~nN~lm~m/{ m. jl)1 

odd 
N 

X II (Zj + Zj_ I - 1)!/[Zj!(Zj_1 - I)!] lin + )j'/2 
j~M+ I 

" X L (A,,12)," K" + I (K~)IFI(I,m + 2 - K7I ; - iwA7It)/ 
7/=ll 

(3.12) 

where 7 = Kt. 
By restricting the calculation to I-branch graphs this 

formula can be used to obtain the R W A result. This is done 
in Appendix D. 

APPENDIX A 

We consider the problem of determining the number of 
paths in a given graph (N,M), for which the number of sta
tions at each state, the set [Ij I, is completely known. In order 
to proceed with the calculation we suppose that the number 

N--------

N-1---------

j+1---------

2 
1 2 Z, 

~lN1~~~~N 
1 2 Zo 

0-+ 
1 

-1 ---------

j'-------

j'-1------------

M+1---~----

M 

FIG~ 3. IJ\ustration of the insertion technique. Station 1 is splitted into 1 and 
l' and 22, steps are inserted between states 1 and 2, creating 2, stations at 
state 2 and adding 2, stations at state I. 
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of steps between the states 0 and 1 is known. This number is 
called S I' and it wi11later be shown that it is wholly deter
mined from [Ij I. Then at this point the number of stations at 
) = 0 is Zo and ZI = Zo at) = 1. Notice that SI = 2Z1 - 1. 
Initially with have no other step in the whole graph (see Fig. 
3). In order to form one path in the graph we proceed as 
follows. Consider one station at state I, say the first station. 
We split this station into two stations I and I f and insert 2n I 
steps between these stations and state 2, as shown in Fig. 3, 
adding in this way n I stations at state 2 and n I extra stations 
at state 1. We can follow the same procedure with the re
maining stations at state I, and find that the given number of 
stations at state I, i.e., II' is given by 

z 
II=ZI+Z2' where Z2= fn j • 

j= 1 

By means of the same procedure we can reach states 3, 
4, etc. up to state N, and therefore write the set of equations 

II =ZI +Z2' 

12 = Z2 + Z3' . 
Ij =Zj +Zj+I' 

IN_I = ZN_I + ZN' 

IN = ZN' 

(AI) 

In the same manner we may proceed "downwards" up 
to state M and find the set of equations 

10 = Zo + Z_I' 

1_ I =:' Z _ I + Z _ 2' 

(A2) . 
IM+' =ZM+I +ZM' 

1M =ZM' 

Solving these equations for the Zj'S, we find 
N-j 

Zj = L (- I)qlj+q' for i>O 
q~O 

J-M 

= L (- I)Qlj_q, for )<0. (A3) 
q=O 

We notice that the number of steps between the states 
) - 1 and) is by Sj = 2Zj forii=- I, and SI = 2Z1 - 1. The set 
[ Ij I is subject to three different constraints. The first two are 

N 

L Ij = m + I, (A4) 
j- M 

and 

1M> I, IN> 1, and Ij >2 for ii=-N,M. (AS) 

The third constraint is obtained from 
:v 
L Sj =m. (A6) 

j= M+ I 

From (A3) it can be easily shown that 
N N L Sj = L [1 + ( - W - I g - 1, (A7) 

j=1 j=1 

M+I M L Sj = L [1 + ( - 1) j - I g, 
j~O j=-I 
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Adding these two equations we obtain the third con
straint to be satisfied by the Ij's: 

N I ( - w - I/j = O. (A8) 
j~M 

Now we consider W(! Ij I). We notice that at the state i 
we can insert the Z, + I extra stations in the Z; original sta
tions in 

(Z, + Z,+ I - l)!/[Z,l(Z,+ I - I)!], 

different manners, from which we readily obtain 

M+ I (Z., + Zr I - 1)1 
W(!/jll= II J -

j' ~ 0 Zj' _ I !(Zj' - I)! 
N - I (Z + Z + I - I)! 

X II ] ] , 
j~ I Zj_ I !(Zj - I)! 

which can also be written as 

APPENDIX B 

We first show the relation: 

qm qm 1 ql 

= I d{ + ml II (d, - .(li'), 
i= 1 j~1 

where d, 'I- d j Vi 'I-j, and the q's are subject to the 
constraint 

(A9) 

(BI) 

(B2) 

Equation (B 1) can be proved by induction. It can II easi
ly be verified for m = 1 or 2. We start by assuming the valid
ity of (B 1) and then form 1m + I (P'): 

where the indices are subject to a constraint similar to (B2): 

qm + I + qm + qm - I + ... + ql = P' 

Then we can write 

1m + I (P') = f Jf;" + IIm(P' - q), 
q=O 

(B3) 

where we have set qm + I = q. Now by means of (B 1) we 
obtain 

1m + I (P') = f d;" + I I d{ - q + ml II (d, - d j ) 

q=O ;=1 j=l 

= Id{+m+l/ll(d, - d j ) 

i= I j= I 

- d~ ~ \ f d';'/(d, - d m + 1) 
i= I 

(B4) 
j= 1 

However the last summation of (B4) is the partial frac-
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j=N--------------~r]=v 

N------~ 

2~~-~-------~~~ 
' _____ !l.~=0 
0--------------------- '1=0 

-,------ 1')=-1 

-2-------------------- '1=-' 

:'-~~~~~~I')=~ 
FIG. 4. This diagram illustrates the relation between indicesj and 17. 

tion expansion of 

j=1 

hence settingp' = p - m, (B4) reduces to 
m+ I m+ I 

1m + I (P') = I d;' + II II (d, - .Wj ), (B5) 
i= I j= 1 

and the proof of (B 1) is completed. 
Now recall that the indices i = 1, ... ,m + 1 denote the 

stations in a path through the graph (N,M ) as shown in Fig. 4. 
We notice that forthe statesj = 21]andj = 21] + 1, the value 
of the diagonal element d j is the same for all the K." = 1271 

+ 12." + I stations at these two states and equal to d." = n 
+ ! + 21], where 1] = INT(i12) for M <J<N. We then set the 

firstKI' elements equal to AI' whereJL = INT(M 12), the next 
KI' + 1 elements equal to AI' + I and so on. Then the first KI' 
terms in the summation (BS) can be written as 

(A/, -AI'+l)-K""(AIl _A/,+2)-K".2 ... (A/,_A\,)-K, 

lim I.w;'/rr(d,-.wj ), 

.-/,-------A),i=l )=1 

where v = INT(N /2). 
However, by means of(Bl), with m = KI' and 

p' = p - m, the last sum is equal to 

lim I I .. ·I·wi·di-· ... w~;:', 
,r/ i ->-A'I ql q~ q"" 

1 ,,:;, i "-~ ~:I' 

where the indices satisfy the constraint: 

(B6) 

ql + ... + qK" = P - K/, + 1. After taking the limit (B6) re
duces to 

The same procedure can be used for the remaining 
m + 1 - KI' terms in (BS), and thus, with A" - A.", 
= 2(1] -1]'), we finally obtain 
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= f 2K
" - m - IA ~ - K'I + I(K P_ 1)1 IT (1/ - 1/'t1/'. 

77=1' '1J TJ'=J-L 

(B7) 

""'I 

APPENDIXC 

In this appendix we show that the following summation 
inversion can be performed: 

00 N, + M p,p - 1 

I I I F(p,M,N,m) 
p~O M~M, 

m = mn 

± f f f F(p,M,N,m). (Cl) 
M= -flN=1 p=m 

m=mn 

Let 
N, +M p,p-I 

G(p,M) = I I F(p,M,N,m). 
N~I 

m=ml1 

If we order this array by columns of constant M, we will 
notice that total number of columns is n + 1, and that the 
smallest value of p is - 2M + 1, Therefore 

00 0 0 00 

I I G(p,M) = I I G(p,M). (C2) 
p~OM~M, M~ -np~ -2M+1 

Now consider 
00 00 N, + M I G(p,M) = I I G'(p,N). 

p ~ - 2M + I p ~ - 2M + I N ~ I 

Then for constant N, the lowest value of p is 
2(N - M) - 1 = mB; hence 

00 N, + M 00 00 I I G'(p,N) = I I G'(p,N). 
p ~ - 2M + I N ~ I N ~ I p ~ m H 

Finally we consider 

f G'(p,N) = f p,p- I 

I F(p,M,N,m). 
p=ml/ p=mJ/ 

m = ,nil 
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(C3) 

For a fixed value of m the smallest value of p is m, hence 

f P'I I F(p,M,N,m) = f f F(p,M,N,m). 

"dd 

p=m 
m=rnu 

Collecting the results (C2), (C3), and (C4) we find (Cl). 

APPENDIX D 

(C4) 

For one-branch graphs, i.e., M = 0, N = I, L[ Ij J con
tains only one terms, i.e" 10 = 11 = (m + 1)/2. In this case 
W ( [ Ij J ) = 1. We also notice that there is only one possible 
value for 1/, i.e., 1/ = 0, for which value A" = n + !. Also Sj 

= SI = m and a l = K(n + l)!/w. Replacing this results in 
(Cl) we obtain 

K'1 = m + 1, m B = 1, 
IFI (I,I; - iw(n + W) = exp[ - iw(n + !)t], 

and 

if> = ! (- i;)m (n + l)m12exp[ - iw(n + !)t] 
m~l m. 

= - isin[r(n + 1)!]exp[ - iw(n + !)t]. 
(see also Ref. 11). This is the usual result from the R W A. 
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The expansion of cylindrical fiber modes in a spherical coordinate 
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Rigorous expansions of cylindrical fiber modes in a spherical coordinate are obtained. The 
expansions are possible not only for the case in which the origin of the spherical coordinates is 
located just on the center axis of the fiber but also for the case in which the origin is in an arbitrary 
position in the transverse cross-sectional plane including the exterior cladding region where the 
fields are of the evanescent type. 

PACS numbers: 42.80.Mv, 84.40.Sr 

I. INTRODUCTION 
Expansions of the Gaussian beam wave in terms of the 

spherical functions have been studied in connection with the 
problem of scattering of Gaussian beam wave by a spherical 
object. 1-5 Works on the two-dimensional version of this sub
ject have also been available.6-8 To the authors' knowledge, 
however, the expansions of the cylindrical fiber modes in a 
spherical coordinate have not yet been derived so far. 

The expansion formulas derived in the present paper 
enable us to treat a wide variety of scattering and/or mode 
conversion problems of cylindrical modes due to spherical 
objects analytically as a conventional boundary value prob
lem, although we need to use, in the practical application of 
these formulas, the approximation with respect to the 
boundary condition on the cylindrical boundary-neglect of 
multiple scattering between the object and the cylindrical 
boundary in the first stage. In fact, for example, the scatter
ing and mode conversion of guided modes in a step-index 
optical fiber caused by a spherical obstacle have been ana
lyzed successfully9 by using the results obtained in the pre
sent paper. 

The purpose of this paper is to obtain the rigorous ex
pansions of the fiber modes in a spherical coordinate. The 
expansion coefficients are given in closed form for either 
electric or magnetic field. 

II. MODES OF THE STEP-INDEX OPTICAL FIBER 
Let us consider the so-called "LP" (linearly polarized) 

modes of the step-index optical fiber. 10 Let the origin of the 
spherical coordinates be located at a point 0 1 on the x axis 
apart from the origin 0 by a distance 10 , as shown in Fig. 1 in 
which the z axis corresponds to the fiber axis. Then, the 
electric field of the guided modes in the core region with y
polarized electric field can be expressed in terms of the ele-

(I) 

mentary cylindrical wave function 'I/Ii(2)(r;,s) (i = 1,2) as 
follows9

: 

where 

II) 

'1/11 (2){r l,s) = iyJ«hp,)exp( - if3z)~,::stP" 

( 1) 

(I) 

'1/12 (2)(r"s) = iJs(hpl)exp( - if3z)~~ss¢I' 

and 

(I) 
p(2)(s) 

=A [Jy_s(hlo) ± (-1)'Jy+s(h1oH 
(I) 

Q(2)(s) 

'A 
= ~/o [± (v - s)Jy-s(hlo)- ( - l)S(v + s)Jy+s(hlo)]. 

(2) 

(3) 

In these equations, 8mn indicates Kronecker's delta, iy and iz 

represent the unit vectors directed along the positive y and z 
axes, respectively, and A is the mode amplitude coefficient. 
Js (.) is the Bessel function of sth order, h = V (k i - f3 2), 
kl = WV EJ.lo = nlko, where ko is the free-space wave num
ber, f3 is the propagation constant, and n I ( = V E tI Eo) is the 
refractive index of the core region. The superscripts (1) and 
(2) on the left-hand side ofEqs. (2) and (3) correspond to the 
upper and lower functions [Eq. (2)] and signs [Eq. (3)] on the 
righ t -hand sides, respectively. If we replace h by iY in Eq. (2), 
and A and Jy(hlo) by AJAhR )/Hy (I)OyR) and Hy (I)(jy'o), 
respectively, in Eq. (3), we can obtain the electric fields of the 

y 

FIG.!. System of coordinates used for the analysis. 
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same mode in the cladding region, where Hv (1)(-) is the vth 
order Hankel function of the first kind, R is the core radius, 
y = V (f3 2 - k ~), where k2 = n2kO' and n2 is the refractive 
index of the cladding region. 

III. EXPANSIONS OF ELEMENTARY FUNCTIONS",; IN 
TERMS OF SPHERICAL VECTOR WAVE FUNCTIONS 

Using the expression of the cylindrical wave function in 
spherical coordinates, II the elementary function '¢i given by 
Eq. (2) can be expressed in the spherical coordinates about 
the polar axis z I as follows: 

(I) (I) 

'¢I (2)(r l ,s) = ¢<2)(ir, sinOlsin¢1 

+ io, cosOlsin¢1 + i"" COS¢I)' (4) 

(I) (2) 

'¢2 (2)(r l ,s) = ¢<I)(ir, cosO I - io, sinO I ), (5) 

with 

(I) 

¢<2) = ! e"P;(COSOI)~i~'S¢I' (6) 
"/ '---- 0 

where 

e = ( - j)"- '(21] + 1) (1] - s)! P' (cosali (k r) 
'I (1]+s)! 1) 'I I I' 

(7) 

andcosa = (J /kl' and whereP;(.) and)1)(-) denote the as so
ciated Legendre function and the spherical Bessel function, 
respectively. Equation (4)-(7) hold also in the cladding re
gion, although cosa becomes apparently greater than 1. 

Our next step is to expand '¢i in terms of the spherical 
vector wave functions M and N 

(I) 

'¢I (2) 

=! i I 
" = 0 In --= 0 a = e,O 

( 
(I) (I») 

. w '(2) (I) '(2) (1) - ] k C mnnMamn + D amnNamn , (8) 
I 

The functions M and N are defined by l2,13 

Mli) = rot [i rzlil(kr)P m(cosO )C?Sm'" ] 
~mn r n n sm 'f' , 

N~I = ~rotM!il , 
omn k omn 

(10) 

where z~:) represents the spherical Bessel functions /'n' n n' 

h'~i>' and h'~,2) for i = 1,2,3, and 4, respectively. The coeffi
cien ts C amn and Dam" can be determined by using the ortho
gonality properties ofM and N. 

A. Determination of C:Tmn and C:T:.nn 
(I) 

C :'W, can be calculated from 
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00 (I) (1) 

X I (1) ( - mIl (2) - 12 (2»), (11) 
1)~0 

where 

(12) 

and 

i
2tT 

Ilil = 0 coss¢lsin¢lsinm¢1 d¢1 

xIT P~,(cosOdP;;'(cosOdcoSOI dOl' (13) 

(14) 

1\21 is the same as 1\11 with COSS¢I being replaced by sins¢1 
and n21 is the same as I~I) with the same replacement. The 
integration with respect to ¢I can easily be performed, yield
ing 1\2) = I~21 = 0 and 

1\11 = !!..- itT P~(COSOI)P;;'(COSOI)COSOI dOl 
2 0 

X [O,.m_ dl + 0ml) - O,.m + 1(1 - 0mo)], (15) 

1T iT/' dP;;'(cosOd 
1111 = _ P' (cosO) sinO dO 

2 2 0 1) I dOl I I 

X [Os.m _ 1(1 + 0ml) + os,m + dl + 0mo)], (16) 

From 1\21 = I ~21 = 0, we get 

Let us introduce the functions Ja and Jb defined by 

Ja (1],n,m) = iT/' P; - l(cosOdP;;'(cosOI)cosOI dOl> 

Jb(1],n,m) = itT P;+ l(cosOdP;;'(cosOI)cosOI dOl' 

1\11 can then be expressed as 

( 17) 

(18) 

(19) 

(20) 

Using the recurrence and the integral formulas of the associ
ated Legendre function, 1~) can be reduced to 

III) = !!..- [0 (1 + 0 )(0 2(n + m - 1)!(n + m) 
2 2 ,.m-I ml n1) (n-m)!(2n+l) 

- mJa (1],n,m) + os,m + 1(1 + omO) 

( 
J ( ) 0 2(n + m + I)! )] (21) 

X m b 1],n,m - "1) (n _ m _ 1)!(2n + 1) . 

Using Eqs. (20) and (21), C ;~~ becomes 

C;)~;, = (1 +O\D)YI - Y 2 , 

where 

(22) 

(n - s)! (n - s + I)! 
Y I = o,m + I --- Yo, Y 2 = Om,,_1 -'-----'- Yo, 

. (n + s)! (n + s - I)! 

Yo = (kl/w)g,, ( - }),,-s+ IP~(cosa), (23) 
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gn = (2n + 1)/[2n(n + 1)]. (24) 

It should be noted that neither Ja (7],n,m) nor Jb (7],n,m) is 
included in Eq. (22) any more. 

II) 
C ~I;,ln can be calculated from 

II) J'2k' (k r ) '" II) (I) 
C'12) = I/n I I ~ e (ml 12)_ 112)) 

Omn £ ) =11) ( ) L '1 3 4' (1 + Umo UJ;:m mn r l '1~0 
(25) 

II) II) 
where 13

12 ) is the same as 1112) with sinmtPI replaced by 
II) II) 

cosmtPl and 14 12 ) is the same as 12
12) with cosmtPl replaced by 

sinmtP I' By steps similar to those leading to the expressions 

for C ;mn given by Eqs. (17) and (22), we can derive the ex
pressions for C bmn : 

(26) 

(27) 

C ;:"n and C b:"n can easily be calculated. The results are 

C b~~) = 0ms2sYo(n - s)!/(n + s)!, 

B. Determination of D~mn and D~'mn 

(I) 

D :~~ can be calculated from 

(I) 2k 
D'(2) = I 

emn (1 + omO).@~~(rl)rl 

( 

(I) 

X ! e'1 n(n + l)/'n (k l rl )/5 (2) 

'1~0 

where 

(' 41Tk i n(n + 1) (n + m)! .@ I, (r) - ___ --:-_ -0.--'------'_ 

mn - (2n + 1 f (n - m)! 

(28) 

(29) 

(30) 

(31) 

X {en + 1) [Z~)_I (k l r»)2 + n [z~)+ I (klr) Y}, 
(32) 

and 
(2lT 

I~I) = Jo sintPlcosmtPlcosstPl dtPI 

X ilT P~(cosB.)P:;'(cosBI)sin2BI dBI' (33) 

(34) 

(2lT 
1 ~I) = Jo costPlsinmtPlcosstPl dtPI 

X ilT P~(cosB.)P:;'(cosB.) dBI' (35) 

1~2l, 1~2l, and 1~2) are of the same forms as 1~1l, I~I), and I~I), 
respectively, except that COSStPI is replaced by sinstPI' Since 
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I~I) = I~I) = nl) = 0, 

D ;~! = o. (36) 

After some manipulations, 1~2), 1~2), and/~2) can be reduced 

to 

1~2) = (1T12l[ - os.," _ 1(1 - 0sO)Fa(7],n,m) 

+Os.m+l(1 +Osl)Fb(7],n,m)], (37) 

I~) = ~ [Os.m -I (1 - OsO)( mJa(7],n + I,m) 

+ (n + m)(n + m -1)(n + 1) Fa (7],n,m -2) 

o 2(n + m)!(n + m)(n + 1) ) + 0 
- '1.n + I (n _ m + 2)!(2n + 3) s.m + I 

x(1 + 0sl) Jb(7],n + I,m) ( 
men - m + 1) 

n+m+l 
+ (n + 1)(Fb (7],n,m) - 0'1.n + I 

X 2(n + m +2)!(n + 1) )], 
(n - m)!(2n + 3)(n + m + 1) 

(38) 

I~2) = ~ [Os.m_ .(1- OsO)(Ja(7],n - I,m) + 0'1.m- 1 

2(n + m - 2)!(n + m -1) ) + 0 (1 _ 0 ) 
X (n _ m)!(2n -1) s.m+1 mO 

(
n-m+l 

X Jb(7],n + I,m) + 0TJ.n+ I 
n+m+l 

X 2(n + m)!(n + m +2) )], 
(n - m)!(2n + 3) (39) 

where 

Fu (7],n,m) = ilT P; -1(cosBI)P:;'(cosBI)sin2BI dBI 

= (0 _ 0) 2(n + m )! (40) 
TJ.n -I TJ.n + I (n _ m)!(27] + 1)(2n + 1) , 

Fb(7],n,m) = ilT P; + I (cosBI)P:;'(cosBI)sin2BI dBI 

=(8 -8) 2(n+m+l)! 
TJ.n + I TJ.n -I (n _ m _ 1)!(27] + 1)(2n + 1) 

Using Eqs. (37)-(41) and the relation 

Ja(7],n + I,m) -Ja(7],n - I,m) 

-8 2(n +m)! 
- TJ.n + I (n _ m + 1)!(2n + 3) 

8 2(n + m - I)! 
+ '1.

n
-

1 (n - m)!(2n - 1) , 

we obtain, after some manipulations, 

D ;~~ = (1 - 8 sO )..::11 + ..::1 2, 

where 

..::1 -8 ..::1 ( AIP~_I(cosa) 
I - m.S+ I 0 (n _ s)(n _ s + 1) 

A2P~ + I (cosa) ) 
+ (n + s)(n + s + 1) , 
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..12 = 8m,s_, ..10 [A IP~ _I (cosa) + A2P~ + I (cosa)], 

..10 =gn( - lY-s+ I(n - s + 1)!/(n + s -I)!, 

A I = (n + 1)/'~ _I (k,r,)/ A o, A2 = n,i~ + I (klr l)/ A o' 

Ao = (n + 1)/'~ _I (klr l) + n/'~ + I (klr l). (44) 
(I) 

D ~~~ can be calculated from 

(I) 2k 
D'(2) = I 

Omn (1 £ ) ",,(I) ( ) +umO=mnrlrl 

00 ( (I) 

X L B71 n(n + 1)/'n(klrl)/s (2) 

71=0 

d [r . (k r )] [(I) (1)]) 
+ 1/ n I I 1 (2) + I (2) 

d 
9 mlO , 

r l 

(45) 

(I) (I) (1) (I) 

where Is (2) and 19 (2) are the same as 15 (2) and 16 (2), respective
(I) 

ly, with cosm¢ I replaced by sinm¢ I' and 110 (2) is the same as 
(I) 

17 (2) with sinm¢, replaced by cosm¢ I' Since the terms associ
ated with ()I in Is, 19 ands 110 are just the same as those in 15 
16 , and 17 , respectively, D ~mn can be calculated following the 
same procedure by which D ;mn was calculated. The results 
are 

D~<;'~ =0. 
(I) 

D :~;) can be calculated from 

.,(1) 2k 00 

D (2) - I "" B emn - ) ",,(I) () L.. ,/ 
(1 + 8mo = mn r l r l 71 = 0 

(46) 

(47) 

( 

(I) d [r . (k r )] (I») 
( 1) ' (k )1 (2) _ II n I I I (2) X n n + i/n lrl 11 d 12' 

r l 

(48) 

where 

r21T 
1\1/ = Jo cosm¢,sins¢, d¢, 

X i1T P~(cos(),)P;:'(cos()dcos(),sin(), d()I' (49) 

(50) 

and IW and 1\2j are the same as I\,? and IW, respectively, 
with cosm¢l replaced by sinm¢" Since 1\,/ = IW = 0, 

D;~~)=O. (51) 

Following the similar procedure as before, we obtain 

(2) _ 2 8 i 8 (n + m + 1 )! 
I II - ~ sm(l + 0"-)1\ 71.n+ I (n _ m)!(2n + 3)(2n + 1) 

8 (n + m)! ) (52) 
+ 71.fl -I (n _ m _ 1)!(2n - 1)(2n + 1) , 
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1(2) = 21T8 (1 + 8 )(8 (n + m + 1)!n 
12 sm sO 71,n + I (n _ m)!(2n + 3)(2n + 1) 

_ 8 n _ I (n + m)!(n + 1) ). 
71, (n _ m _ 1)!(2n _ 1)(2n + 1) (53) 

Consequently, we get 

D ;~~) = - 2Oms L1 0 ( AI P~_ dcosa) 
n-s+l 

- ~P~+I(COsa)). (54) 
n +s 

It can easily be shown that D ~~~ becomes 

D ~~~) = (1 - 8sO )D ;~~), 

D~~~) = O. 

(55) 

(56) 

Thus, all the coefficients in the expansion of "'I and "'2 
have been determined. The coefficients of the corresponding 
expansions in the cladding region can be obtained from those 
for "'I and "'2 by only replacing k, and k2 • 

IV. EXPANSION OF GUIDED MODES IN THE STEp· 
INDEX OPTICAL FIBER 

A typical example of applications of the expansions for 
the elementary functions "'I and "'2 is the expansion of guid
ed modes in the step-index optical fiber in terms of spherical 
vector wave functions. 

In the case of 10 #0, the expansion for the electric field 
given by Eq. (1) becomes 

(I) ( II) II)) 
E(2)- ~ ~ -1'~CI2IMII) +D(2)M') , 

- L.. L.. k mn omn mn ... mn 
n=Om=O 1 

(57) 

where 

(I) (I) 

-j~C(2) = -rmnW~~, kl mn 

(I) (I) (I) 

D~~ =jrmn(F~;~AI + G~~A2)' 
rmn = (-lY - m + I(n - m)!/(n + m)!, (58) 

W~~, = UI(m -l}BI + UI(m + 1)·B2 + Uz(m)·B3, 

W<;'~ = VI(m -1)·(1 - 8ml )BI 

+ (1 - 8mo )V,(m + 1)·B2 + Vz(m)·B3, (59) 

BI = P;:' -I(cosa)-(n - m + l)(n + m), 

B2 = P ~n + I (cosa), 

B3 = 2mP;:'(cosa), 

F~~ = UI(m -1)·D, - UI(m + 1).(1 - 8mo )D2 

- 2Uz(m)·(1 - 8mO )D3' 

(60) 

F<;'~, = - VI(m - 1).(1 - 8m, )DI + VI(m + 1)·D2 

+ VzCm)·(2 - 8mo )D3' (61) 

D, = P;:' ~/(cosa)·(n + m -l)(n + m), 

D2 = P;;'_+II(cosa), 

D3 = P;;'_I (cosa)·(n + m), 

G~~ = UI(m -l).TI - UI(m + 1)-(1 - 8mO )Tz 

+2Uz(m)-(1 - 8mO )T3' 
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G~~ = - VI(m -1).(1- OmO)TI + VI(m + 1).Tz 
- Vz(m)·(2 - omo)T3, (63) 

TI = r; ;/(cosa)-(n - m + 2)(n - m + 1), 

Tz = r; :/(cosa), 

T3 = P'; + I (cosa)-(n - m + 1), 

UI(m) = gn P ( I '(m), 

Uz(m) = -jgnQ(I'(m), 

VI(m) =gnpIZ)(m), 

Vz(m) = jgnQ (z'(m). 

(64) 

(65) 

The above expansions are also applicable for the cladding 
region, except that h, A, and Jv (hlo) must be replaced by jr, 
AJ,,(hR )IH~I)(jrR), and H~I)(jrlo)' respectively. 

In the case of 10 = 0, it would be better to start from the 
following equation: 

(I) (1) 

E(2) = A~I (2)(r,v) 

Ah ( (I) (I») 
±j 2{3 ~2 (2)(r,v + 1) + ~2 (2)(r,v - 1) . (66) 

The results are written in the similar forms as Eqs. (57)-(65), 
but W mn , F mn' and G mn must be replaced by the following: 

W~~ =Agn [O".m_1 (1 +oml)B I 
+ Ov.m + I Bz + (h 12{3)fB3]' 

W~~ = Agn [D".m -I (1 - Oml )BI 

+ Dv.m + 1(1 - omo)B2 + (h 12{3)fB3]' (67) 

F~)n = Agn [D".m _ 1(1 + Oml )DI 

- Ov.m + 1(1 - orno)Dz - (h 1.8)(1 - 0molfD3]' 

FI!;'!n = Agn [ - Dv.m _ II 1 - omdDI 

+ Dv.m+ IDz + (h l.8lfD3], 

G~)n =Agn [D".m_1 (1 + Oml )TI 

(68) 

- Ov.m + 1(1 - Dmo)Tz - (h 1.8)(1 - 0mO)JT3]' 

G~)n =Agn [ - O".m _I (1 - Oml )TI 

+ Dv.m + I Tz - (h 1.8 lIT3], 

where 

f = (1 + D,{)D".m - I + Dv.m + I • 

(69) 

(70) 

Thus far, we have derived the expansion formulas of the 
guided modes whose transverse electric field is polarized lin
early in they direction and have assumed that the expansion 
center is on the x axis. However, we can treatthe more gener
al case where the expansion center is located at an arbitrary 
position in the transverse (xy) plane by superposing the x
andy-polarized modes. The electric field of the guided mode 
in the core region whose transverse electric field component 
is polarized linearly in the x direction is, for the case of 10 # 0, 

.All) 
E(2) 

where 

'" n [ .All) .All)] '" "'. -J.!:!.... C (2) Mil) + D (2) N~I) 
~ ~ k mn :mn mn om" ' 

n=Om=O 

(jJ ....... (1) ....... (1) 

-J' - e(2) = - r W(2) k. mn mn mn' 
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(71) 

.All) .All) .All) 

D~~ =jrmn(F~)nAI + G~~Az)' (72) 

W~)n = UI(m - 1).B I + (1 - 0rno)UI(m + 1).B2 

- U3(m).B3, 

A. (2) 
W mn = VI(m - 1)·(1 - DmdBI - VI(m + 1)·B2 

+ V3(m).B3, (73) 

F~~ = UI(m - 1)·DI + UI(m + 1)·D2 

- U3(m).Di2 - Dmo ), 

F~~ = VI(m - 1).(1 - Oml )DI + V\(m + 1)·(1 - Dmo)Dz 

-2V3(m).(1 - 0mO)D3, (74) 
....... 
G~~ = U\(m -1)·T\ + U\(m + 1).T2 

+ U3(m)·(2 - omo)T3, 

G~~ = VI(m - 1)·(1 - Dml )TI + VI(m + 1).(1 - OmO)T2 

+2V3(m)·(1 - omo)T3, (75) 

Uim) = -gnR(I'(m), 

V3(m) = - gn R (z'(m), (76) 

(1) ....... 

R (2)(m) = (jAh 12.8) 

X {[ Jv+ I _ m (hlo) - J" _ I _ m (hlo)] 

± ( _1)m [J,,+ 1+ m (hlo) - Jv_ 1 + m (hlo)]}. 
(77) 

The expansion formulas in the cladding region can also be 
written in the same form except that h, A, and J" (hlo) are 
replaced byjr,AJ,,(hR )IH~I)(jrR), andH~I)(jrlo), respec
tively. 

The expansion formulas for the magnetic field can auto
matically be obtained from those for the electric field using 
Maxwell's equations. So, we need not obtain both of them. 
However, we may get first the formulas for the magnetic 
field instead of the electric field, but these results do not 
completely coincide with those obtained through the expan
sion formulas for the electric field because the LP modes of 
the fiber do not strictly satisfy Maxwell's equations: the dif
ference is, of course, negligibly small in the numerical sense. 

V. CONCLUDING REMARKS 

The rigorous expansion formulas for the guided mode 
of the step-index optical fiber in terms of the spherical vector 
wave functions were derived for an arbitrary polarized mode 
and for an arbitrary location of the expansion center. The 
radiation mode can also be expanded in terms of the spheri
cal vector wave functions in a similar fashion, since the dif
ference between radiation mode and guided mode is not es
sential in obtaining the expansion. 

Lastly, it would be worth mentioning that the expan
sions for the electric field of the guided mode in both the core 
and cladding regions have numerically been calculated for 
fairly wide ranges of parameters and the results have been 
confirmed to agree very well with those obtained from the 
original expressions. 
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A family of differential equations arising from multi-ion electrodiffusion 
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The system of Nernst-Planck equations and Gauss's law describing an arbitrary mixture of ions 
in steady-state drift and diffusion is shown to be equivalent to a single ordinary differential 
equation of order equal to the number of distinct ionic charges in the system. 

PACS numbers: 66.1O.Cb, 84.25. + z, 02.30.Hq 

INTRODUCTION 

The theory of electrodiffusion is a macroscopic descrip
tion of the transport of charged particles through material 
barriers by a combination of diffusional and migrational 
fluxes. From its origin in the liquid-junction theory of 
Nernst and Planck I it became the basis ofBernstein's2 mem
brane theory of nerve potentials. It has been used extensively 
in the description of biological membranes and the artificial 
membranes designed to model them. 3

-
9 Applications in con

densed-matter systems include space-charge-limited cur
rents in solid dielectrics. 10-14 Related formulations have ap
peared in the study of the drift-dissipative instability in 
plasma physics. 15 The Nernst-Planck formulation contin
ues to be important in electrochemistry. 16 

This paper deals with a steady-state one-dimensional 
electrodiffusion regime with no restriction on the number 
and type of ion species present. (Because the term "carrier" 
has different meanings in solid-state physics and membrane 
biophysics, the work "ion" is here used to designate a 
charged particle of any type.) Its purpose is to report the 
existence of a family of ordinary nonlinear differential equa
tions that arises from this formulation. The first two mem
bers of this family, a first-order differential equation describ
ing ions of the same charge8.10-

13 and a second-order 
differential equation for a system with ions of two different 
charges, 17.18 have already appeared in the literature. Differ
ential equations of the type reported here govern stationary 
electrodiffusion regimes of arbitrary complexity, the order 
of the equation being equal to the number of different ionic 
charges present in the system. 

STATEMENT OF THE PROBLEM 

As Schlogl19 showed, it is convenient to divide the ions 
present in a drift-diffusion system into classes all of the same 
charge, qi' The different species belonging to a given charge 
class will be indexed by j. The two equations comprising the 
steady-state electrodiffusion system are the Nernst-Planck 
equation 

(1 ) 

which states that the current density J ij due to ion ij consists 
of a diffusion and a migration component, and Gauss's law 

dE 417" m k i 

- = - L LqiNij' (2) 
dX € i~lj~l 

Here X is the coordinate normal to the planar boundaries, E 

the electrIc field, Nij the number density of the ion ij and u
j 

its mobility, € the dielectric constant and 8 the temperatur~ 
in energy units (Le., 8 = kB T), the latter three quantities 
being assumed uniform across the membrane. In the steady 
state, and in the absence of sources or sinks, here assumed, 
the J ij are also independent of X. Implicit in Eq. (1) is the 
assumption of Einstein's equation, D = u·8 which relates 

IJ lJ' 

the mobility to the diffusion coefficient. The total number of 
ion species is ~;n~ 1 k;. 

Interactions between ions of different species are not 
present in Eq. (1) (with scalar uij), but arise from electrostatic 
coupling, through Gauss's law. In membrane studies the 
quantities of interest in comparisons with experimental data 
are the electrical potential difference 

v= - lLEdX, (3) 

where L is the membrane thickness, and the net current. 
It is the principal object of this paper to show that the 

system of m + 1 coupled differential equations of Eqs. (1) 
and (2) can be reduced to a single differential equation of 
order m in the single dependent variable E. 

THE SCALING PROPERTY 

Equations (1) and (2) constitute a nonlinear system, so 
the solutions are not subject to superposition or multiplica
tion by an arbitrary constant. However, they are unified by a 
general scaling property.8 For an arbitrary nonzero real 
number a, let the transformation Tn be defined by the fol
lowing (subscripts ij are omitted for simplicity): 

X-a-1X 

v-v 
E-aE Ta. 
N-a2N 

J-a3J 

(4) 

It is readily seen that the system defined by Eqs. (1)-(3) is 
invariant to Ta so that from any given solution an infinity of 
further solutions can be generated. The set of transforma
tions Ta forms an Abelian group with successive transfor
mations Ta Tp = Tap as the (commutative) binary oper
ation, Tl the identity, and T lla the inverse of Ta. 

DIMENSIONLESS FORM 

Equations (1) and (2) will now be cast into dimension
less form, with the simultaneous suppression of the index). 
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(The fact that this can be done shows that the behavior of the 
system reflects charge classes rather than individual ion spe
cies present,19 although the latter must be accounted for in 
the boundary conditions.) Let qo be the unit of charge, taken 
as the proton charge. Then 

Vi = q;lqo (5) 

is the (signed) valency of the ion. The index iis assigned such 
that qi (and v;) for different i are unequal. 

For an arbitrary unit of ion density No the Debye length 
is defined 

Let 
k 

n i =No 'IN!}, 
j=' 

C = _A I (Jij) 
1 NoqJJj~' u!} , 

p = (qoA Ie )E, 

x=(XIA)+x" 

where x, is a constant to be defined. 

(6) 

(7) 

(8) 

(9) 

(10) 

In these dimensionless units, Eqs. (1) and (2) become 

dn 
_I = vipni - Cit i = 1,2, ... ,m , 
dx 
dp m 

- = LVini' 
dx i~' 

THE ONE- AND TWO-CHARGE CASES 

(11) 

(12) 

The single-ion case was solved by BorgnisZO in 1936, 
and Fan introduced the more convenient Airy-function 
form of the solution in 1948. '0 Leuchtag and Swihart point
ed out that the single-ion solution can be generalized to the 
case of ions of one charge, called the homovalent case. 8 The 
individual ion densities can be regained by use of a formula 
obtained by SchlogI. K

.'9 

With m = I, Eqs. (II) and (12) become 

n; = vpn, -C, 

p' =vn" 

(13) 

(14) 

where primes denote x-derivatives. Elimination of n, from 
the nonlinear term and integration yields 

n, =!p2 
- cx, (15) 

where the x, in Eq. (10) has been used to absorb the constant 
of integration. Thus the differential equation equivalent to 
the system of Eqs. (13) and (14) is 

n; = V2Pn2 - Cz, 

pi = v,n, + v2n2 • 

(18) 

(19) 

The equation obtained by summing (17) and (18), sub
stituting (19), and integrating, 

n, + nz = !p2 
- cx, (20) 

where c = c, + c2, is solved for n2 and substituted into (19). 
Between the resulting equation, 

pi = !v2P2 + (v, - vZ)n 1 - v2cx 

and Eq. (17), n, is eliminated to give the desired differential 
equation in p, 

p" - (v, + V2 )pp' + ~v,v2P] - v,Vzcxp 

+VI CI +vzcz = O. (21) 

This is the second member of our family of differential 
equations. It was derived for one positive and one negative 
ion by Bruner in 1965. 17 With ions of equal and opposite 
charges, the second term in Eq. (21) vanishes; this version 
(for ± 1) was derived by Bass lK in 1964 and by Cohen and 
Cooley21 in 1965. A related integrodifferential equation re
cently appeared in a study of enzymatic surface layers. 22 

THE GENERAL REGIME 

The procedure for a system with an arbitrary number of 
different ionic charges is a straightforward generalization of 
these special cases. As before, we sum Eq. (11) on i, use 
Gauss's law, Eq. (12), to eliminate the vini from the product 
term and integrate, using the previously incorporated con
stant of integration [see Eq. (10)]. The result is the general 
first integral, 

m In 

'" _12 '" L n i - 'JP - x L Cit (22) 
i= 1 i= I 

of which Eqs. (15) and (20) are special cases. 
To eliminate the ni requires m relations between them, 

of which Eqs. (22) and (12) constitute two. We multiply Eq. 
(11) through by v7 - I, where n is an arbitrary integer ranging 
from 1 to m, to obtain 

(23) 

Now define 

In (x) = i v7 - 1 ni(x) (24) 
i= 1 

and 
m 

A '" n-I n = LVi C i (25) 
i= 1 

p' = ~VpZ - vcx. (16) to write Eq. (23) as a recursion relation for the function/n (x) 

This equation is the first member of the family of differential 
equations described here. (Reconversion to physical varia
bles is omitted.) 

For a system containing ions of two different valencies, 
m = 2, Eqs. (11) and (12) become 

(17) 
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In+1 (x) = _1_ [J~(x) +An]. 
p(x) 

(26) 

This recursion relation can be used to derive the entire 
set ofl's from its first two members, Eqs. (22) and (12), as 
functions of p and its derivatives, and x: 

(27) 
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12 = Ui +AI)/p =p', 

h = U~ + A2)/p = (p" + A2)/P, 

(28) 

(29) 

14 = U; + A3)/P = pm /p2 - (p" + A 2)p' /p3 + A3/P, 
(30) 

The general expression is 

_ n-3 (~~)k (~) (~~)n-2 dp 
In - 2: An - k -I d + d d' 

k~O P X P P X X 

n = 3,4, ... ,m. (31) 

Thus the m linear combinations of ni , 

nl + n2 + .,. + nm =It, 
vln l + v2n 2 + ... + Vmnm =/z, 

v.nl + ~n2 + ... + v;.nm =/3' 
(32) 

v7' - I n I + 11' - I n2 + ... + v;;: - I nm = 1m 
are known functions of X, p, and the first m + I derivatives of 
P, and can be solved for the ni • 

The existence of solutions for the ion concentrations ni 

follows from the non vanishing of the determinant of the 
coefficients, 

(33) 

v';'-I V;-I v,;:-l 

which in tum is a consequence of the unique assignment of 
the valencies, assumed above [below Eq. (5)J. 

The solution for n I is 

It 
12 

1m V;' -- I V;;: - I 

nt,Bntf/ntlv7 -IBnl (34) 

and that for the general concentration nj (i = 1,2, ... ,m) is 

ni = ntlBnf/ntlv7 - I Bni , (35) 

where the integers Bni are the cofactors of the ni element of 
.d m , Eq. (33). 

The substitution of Eq. (34) into Eq. (11), for i = 1, gen
erates the equation 

i: Bnl (f~ - vlPln + v7 - Icd = o. (36) 
n~' 

With the functional values of/n given in Eqs. (27)-(31) in 
terms of P and its derivatives and x, Eq. (36) can be seen to be 
an ordinary differential equation of order m and first degree. 
A general solution of the equation is a function of the form 
p = pix), containing as parameters the m current densities ci , 

the m valencies Vi' and m constants of integration. To obtain 
the concentrations nit one uses pix) and its first m - I de
rivatives to obtain theln from Eqs. (27)-(31); these are then 
substituted into Eq. (35). 

1319 J. Math. Phys., Vol. 22, No.6, June 1981 

EXPLICIT FORMS FOR THREE- AND FOUR-CHARGE 
CASES 

The method may be easily illustrated by deriving a dif
ferential equation for an electrodiffusion system with three 
different valencies. 

Noting that, for m = 3, B11/B31 = - (V2 + v3) and 
BIlIB31 = V1V3' we may write Eq. (36) in the form 

I; - VlPh - (Vl + v3)(/~ - VIP/z) + V2V3(f; - vIP/I) 

+ [VI - VI(V2 + v3) + V1V3]C I = O. (37) 

With Eqs. (27)-(29) and (25), this becomes 

pp'" - p'p" - (VI + V2 + V3Jp2p" + (V IV2 + VIV3 + V2V3Jp3p' 

- (VIC I + VzCz + V3C3Jp' - ~VIVZV3P5 (38) 

+ VI VZV3(CI + Cz + C3)xp3 - [(V2 + V3 )V IC I 

+ (VI + v3)VZcz + (VI + V2)V3C3]p2 = O. 

Similarly, for m = 4. the differential equation for the 
field pis 

B41 [p2P'4l - (3pp' + vJ!PJp'" - /pp" - 3p'2 - V1P2p') 
X(p" +Az) -A3/P2p' + VtP4)] 
+B3I Cp3p'" _p2p'p" - vtPP" -AzP2/p' + vtP2)] 

+ BzIP4/p" - vtPp') + BI tP4/pp' - !vtP3 (39) 

+ vlAlxp -AI) + BC.p4 = 0, 

where 

B41 = - [~(V4 - v3) - ~(V4 - vl ) + ~(V3 - V2)]' 

B31 = v~ (V4 - v3 ) - v~ (V4 - v2 ) + v! (v) - V2)' 

B21 = - [vi(~ -~) - v~(~ -~) + v!(~ - ~)J, 

B'I = - V2V 3V 4B41' 
4 

B = 2: v7 - 'Bnl , 

n=1 

and the A 's are as defined for m = 4 in Eq. (25). 

DISCUSSION 
The complexity of the steady-state behavior of an elec

trodiffusion system depends on the number of distinct 
charges present. The system ofEqs. (1) and (2), for m charges, 
is described by the m-Qrder differential equation, Eq. (36). 
The first four members of this infinite family of differential 
equations are given in Eqs. (16), (21), (38), and (39). 

Equation (16) is a Riccati equation whose solution is 
well known, both in terms of Bessel functions of fractional 
( ± t, ± t) order 1 1.12.20 and in terms of the equivalent but 
more convenient Airy functions. 8,lO,13 A numerical method 
for solving the two-point boundary problem generates the 
current-voltage curves for this case. 23 [The conversion to 
the notation in Refs. (8) and (23) is: s==(x-xl)/V2; 
e == pi V 2; nj = n;;i;== V 2Ci.] Equation (21), with V2 == - VI, 

is reducible to the second transcendent of Painleve,18,22.24 
which has been generated from Airy functions by exact 
modified Korteweg-de Vries equation theory. 25 Since Eqs. 
(38) and (39) have (to my knowledge) not been published 
before, there are clearly no known solutions for them. 

The scaling property, Eq. (4), may, of course, be written 
in terms of the dimension1ess variables, with IX, E, N i , J i 1 
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-I x, p, n i , Ci J; the An transform like the ci • A quick check 
reveals that Eqs. (16), (21), (38), and (39) are homogeneous 
with respect to the scaling transformation. 
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Some upper bound integral inequalities are derived for various optical constants. Weight 
functions which damp out the high frequency spectral domain are given special emphasis. The 
implications for testing experimental data are discussed. 

PACS numbers: 78.20.Dj, 42.90. + m 

I. INTRODUCTION 

The purpose of this p:>per is to consider integral in
equalities of the form I: W(mo,m)d(m)dm <A (a,(J,mo)' (1) 

where d(m) denotes a particular optical constant and 
W(mo,m) is some convenient weight function. In the present 
work the interval [a,(J] will be taken as [0, 00) and A (0,00 ,mol 
will be abbreviated to A (mo)' The situation for general limits 
a andp, which is certainly a case of considerable interest and 
practical application, appears somewhat more difficult if a 
discussion free of additional assumptions about the specific 
nature of the medium is required. The topic is currently un
der investigation. 

The motivation for this study was twofold. A consider
able amount of work has been carried out on sum rules for 
optical constants. 1-7 Almost all these results may be written 
in the form 

(2) 

There are severe restrictions on the choice of weight 
function w(lUo,m) which allow B (lUO) to be determined explic
itly. In order for a relationship like Eq. (2) to be useful in the 
analysis of experimental data, it is highly desirable that, for 
values of the optical constants which are experimentally in
accessible, the resulting contributions to the integral be as 
small as possible. Usually, the most inacessible spectral 
range for optical constant measurements is the high energy 
domain. 

Problems in data analysis could be reduced to a mini
mum by the simple expedient of choosing a weight function 
vanishing very rapidly at high frequencies; for example, an 
appropriate gaussian function would be suitable. This has 
the effect of producing for the optical constant of interest 
what is essentially a "band-limited" function. Unfortunate
ly, for weight functions of this particular form, the function 
B (mo) cannot be determined (at least by the procedures used 
in Refs. 1-7). 

A commonly employed approach is to augment the 
available experimental data with semi empirical extrapola
tions to the high frequency range. In those particular cases 
where the spectral range for the optical data is rather re
stricted, which is common in practice, it becomes somewhat 
difficult to ascertain whether any inaccuracy in satisfying 
Eq. (2) rests with the experimental data or the extrapolation 

procedure, or both. In such cases Eq. (2) is of restricted util
ity for testing experimental data. 

The alternative viewpoint, which is taken in this work, 
is to start with a highly damped weight function and then 
determine the upper bound A (lUO). Errors arising from ne
glect of experimental data beyond some upper frequency can 
be reduced significantly by choosing weight functions which 
vanish rapidly as m---+ 00. The utility of Eq. (1) is then gov
erned by the magnitude of the deviation between the con
stant A (mo) and the true value of the integral in question. 
When such deviations are small for a particular choice of 
weight function, Eq. (1) may be more useful in practical ap
plications than Eq. (2), for reasons mentioned above. 

The constant A (mo) is not in general determined as the 
best possible bound in this work. Work to determine the best 
possible bounds would certainly clarify the relative advan
tages of Eq. (I) and (2) in data analysis. 

II. INEQUALITIES FOR THE REFRACTIVE INDEX 

In this work we have restricted the assumptions on the 
mathematical properties of the optical constants to those 
employed in the derivation ofEq. (2). Stated briefly, the gen
eralized optical constant is an analytic function in an appro
priate domain, and some assumption about the asymptotic 
behavior as m---+oo is used to derive Eq. (2). Usually the as
ymptotic behavior is taken from the free electron gas model. 
With such general assumptions on the behavior of the opti
cal constants, it is to be expected that there are relatively few 
general inequality relations. 

Ifwe denote the real and imaginary parts of the general
ized refractive index by n(m) and K(m), respectively, then 

and 

L'" m I/2K(m) 1/2 exp( -1Ilm2/128m~) dm<,m6/2mp (3) 

L" [mK(m)n(m)] 1/2 exp( - ~m2/128m~) dm<,m~l2mp' 
(4) 

where mp is the plasma frequency and mo is some arbitrary 
frequency. Equation (3) is derived in the following manner. 
Starting from the Buniakowsky-Schwartz inequality, and 
for some weight function W (mo,m), 

100 

ml
/
2K(m)1/2W(mo,m) dm 

<, [lOO mK(m) dm 1° W (mo,m)2 dm] 1/ 2
• (5) 
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Ifwe choose 

W(wo,w) = exp( - rw2/12Sw~) 

and use the resule 

(6) 

L" WK(W) dw = !1TW~, (7) 

then Eq. (3) follows directly. An equivalent procedure yields 
Eq. (4) if the sum rule2 

1'" WK(w)n(w) dw = !1TW~ (S) 

is employed. 
In Eq. (3) the gaussian weight function is very highly 

damped as w- 00 , so errors resulting from omission of data 
should be negligible for the high frequency spectral range. It 
should also be noted that Eq. (3) has an advantage over Eq. 
(4), since only experimental data for a single optical constant 
is required to utilize Eq. (3), whereas Eq. (4) requires both the 
dispersive and dissipative data for the generalized refractive 
index. Inequality constraints like Eq. (4) therefore do not 
provide information on the quality of the experimental data 
for the dispersive and dissipative modes separately. 

An inequality similar to Eq. (3) can be derived for the 
refractive index. The first step is to introduce a second 
weight function of the form (w2 + w~) -\ 12. A related idea is 
well known in the derivation of certain types of integral in
equalities, such as generalizations of Carlson's inequality.8 

We have 

1"0 n(w) I/Z W(wo,w) dw 

= 100 

[(w2 + w~)1/2W(wo,w)n(w)1/2 dw/(w2 + W~)1/2] 

< {1°O (w2 + w~) W (wo,W)2 dw 1
00 

[n(w) dw/(w2 + w~)] } 1/2
• 

(9) 

If we make use of the relation6 

100 n(w) dw _ ~ = _1_ 100 

WK(W) dw 
2 2 'L. 2 2 ' W + Wa UlJa Wa 0 W + Wa 

(10) 

then 

100 

n(w)1/2W(wo,w) dw 

«100 (wZ + w~)W(WO,W)2 dW(1T/2wa)(1 + W~/2w~)]1/2,(11) 
where the inequality 

f" WK(W) dw/(w2 + w~) < 1TW~/4<u~ (wa > 0) (12) 

has been employed. For the choice 

W( ) - ",'/2"'5 Wo,W = e , (13) 

100 

n(w)1f2 W(wo,w) dw 

< (r/4/4<ua ) [(wolwa )(2w~ + w~ )(2w~ + w~ )]112 

(Wa >0). (14) 
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Since Wo is arbitrary in Eq. (13), we may choose Wo = Wa and 
obtain 

roo 31/2 
Jo n(w)1/2W(wa,w) dw < ~/4(2w~ + w~r/2, (15) 

with weight function W (wa,w) = exp( - w2 /2w~). The case 
Wa = wp leads to the simple bound 

100 

n(w)1f2 exp( - w2/2w~) dw <irI4wp. (16) 

The best possible bound for Eq. (14) can be obtained by deter
mining the minimum of the right-hand side with respect to 
Wa' We find the sharpest bound when wa is given by 

Wa =Hw~ +w~ + [w~ +wri + 14<u~w~r/2I.1/2 
The above derivation may be carried through in an 

analogous manner with n(w)1/2 replaced by [WK(WW /2 to 
yield 

100 

[WK(WW /2 exp( - w2/2w~) dw 

(17) 

The above approach leads to a final result similar to that 
discussed at the start of this section; however, the final 
bound is less sharp. This is immediately apparent on writing 
Eq. (17) in the equivalent form 

100 

[WK(W)] 1/2 exp( - rw2/12Sw~) dw <@1/2W6/2Wp. 

(IS) 

This is not surprising, since the procedure of introducing the 
additional weight factor (w2 + w~) - 112 does not lead to opti
mum bounds. 

For the particular choice of weight function 

(19) 

the following simple inequality for the refractive index is 
obtained: 

100 

[n(w) dw/(w2 + W~)] < (1T/2wo)n(O) (Wo > 0), (20) 

where n(O) is the refractive index at zero frequency. The 
bound indicated is of interest only for the case of insulators, 
since for conductors n(w)-w-1/2 as w-G. The proof ofEq. 
(20) follows directly from the Kramers-Kronig relation con
necting the real and imaginary parts of the refractive index: 

n(wo) - I = (211T)p 1'" [WK(W) dW/(W2 - (6)] 

and for Wo = 0 

n(O) - 1 = (211T) 100 

[K(W) dw/w] 

> (2/1T) 100 

[(WK(W) dw/(w2 + w~)], 

(21) 

(22) 

and using Eq. (10) leads to Eq. (20). It is to be noted that 
inequality (20) involves only a single optical constant and is 
therefore suitable for analysis of experimental data. 

The inequality (20) can be used to derive the following 
inequality (using the approach indicated above): 
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[sO' W(wO,w)n(w)I/2 dW]2 1Tn(O) 0 
< --, Wa> , 

SO' W2(Wo,W)(W2 + W~) dw 2wa 
(23) 

where W (wo,w) is any suitable weight function. Equation (23) 
depends on only one optical constant, and the final result is 
independent of the plasma frequency. 

III. INEQUALITY FOR THE REFLECTANCE 

If we know that the optical constant satisfies 

O<O'(w)<&" (24) 

for the interval [0,00), and we consider a weight function 
W(w) which is decreasing on the same interval, then 

and 

[cat - O'(w)][W(w) - W(w')] is positivefor w 

on the interval [O,w/] 

O'(w)[W(w/) - W(w)] is positive for w 

on the interval [w', 00). 

Hence, 

J:' [&" - O'(w)]( W(w) - W(w/)] dw 

+ i~ O'(w)[ W(w/) - W(w)] dw>O. 

Equation (25) can be rewritten as 

F(w/)==:&" f" W(w) dw 

+ W(W/)[fO O'(w)dw - &"w'] 

;> L'" O'(w)W(w) dw. 

(25) 

(26) 

The optimum upper bound is determined from the minimum 
of F(w/). Hence, 

a~~~/) = [f" (j'(w) dw - w&"] a~~~/) = 0 (27) 

and therefore 

w/ = (I/ &") fO O'(w) dw. 

Equation (26) may be written in the following form: 

100 

O'(w)W(w) dw<&" lw
' W(w) dw 

(28) 

(29) 

with w' given by Eq. (28). Equation (29) is a variant of Steffen
sen's inequality,9 and the above derivation is related to a 
procedure of Apery. 10 Equation (29) would be potentially 
very useful if the appropriate upper bounds on the various 
optical constants were available. Unfortunately, except for 
one important case, such upper bounds are unknown. 

Consider the special case of Eq. (29) for the reflectance 
R (w), 

O'(w)=R (w), 

&" = 1, 

1323 J. Math. Phys., Vol. 22, No.6, June 1981 

(30) 

(31) 

w' = .r R (w) dw, (32) 

and choose a convenient weight function 

W(w) = rw/(U", (33) 

where Wo is some arbitrary frequency. Combining Eqs. (29)
(33) yields 

(I/wo) L" R (w)e-w/<u"dw<l - e-<U'/(U". 

This is clearly a refinement on the obvious inequality 

(I/wo) 1"" e - (UIW"R (w) dw < 1 

and will be a substantial improvement when 
(I/wo)SO'R (w) dw is much less than 1. 

IV. DISCUSSION 

(34) 

(35) 

The procedures discussed in Sec. II can be applied to 
the dispersive and absorptive parts of the generalized dielec
tric constant, to yield exactly analogous inequalities to those 
reported for the real and imaginary parts of the generalized 
refractive index. The approach also applies to most of the 
optical constants if appropriate equations analogous to Eqs. 
(7) and (10) can be established. 

It is to be stressed that the reported inequalities are nec
essary constraints only. In those cases where experimental 
data lead to a violation of one of the inequalities, then that 
data is to be regarded as inaccurate. Nothing can be said 
about the accuracy of the data when the inequalities are sat
isfied, since offsetting inaccuracies may still exist in the ex
perimental data. 

For some of the inequalities derived herein, we have not 
made use of the precise asymptotic behavior of the optical 
constant under investigation, although it is implicitly as
sumed that it is such that all integrals under discussion con
verge. This contrasts with the situation for the derivation of 
some exact sum rules, where the asymptotic behavior must 
be precisely known. 
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We expand here the study of the type of identity which has been successfully used to prove the 
necessity of spherical symmetry in static black holes and uniform density stellar models. We show 
how the system of partial differential equations, whose solutions correspond to these identities, 
can be decoupled and partially integrated for fluids with an arbitrary equation of state. The 
problem of finding such identities is reduced thereby to the problem of finding the solutions to a 
single ordinary differential equation, plus quadratures. 

PACS numbers: 97.60. - s, 95.30.Sf 

I. INTRODUCTION 

At the present time, the program to determine from 
general relativity theory its predictions, concerning the 
properties of the equilibrium states of astrophysical objects 
(stars and black holes), is far from complete. One aspect of 
that program, to confirm our intuitive belief that static (i.e., 
stationary and nonrotating) stellar models and black holes 
must necessarily have spherical symmetry, has been partial
ly completed. It has been shown that isolated static black 
holes 1-3 and uniform density stellar models4 must have 
spherical symmetry. The crucial element in the arguments 
which lead to those results is the existence of certain identi
ties satisfied by the static solutions of Einstein's equations. In 
this paper we discuss identites of this type which apply in the 
interior regions of stellar models having arbitrary equations 
of state. We show how the procedure which was developed 
to derive these identities4 can be significantly simplified. In 
particular, we show how the system of partial differential 
equations, whose solutions correspond to these identities, 
can be decoupled and partially integrated. The problem of 
finding identities for fluids with arbitrary equations of state 
is reduced thereby to finding the solutions of a single ordi
nary differential equation, plus some quadratures. Since 
identities of this type have played such a crucial role in the 
understanding of static black holes and uniform density stel
lar models, it seems likely that the simplifications presented 
here will bring us a step closer to the complete proof that all 
static stellar models must be spherical. 

II. REVIEW 

In the first paper of this series (Ref. 4; hereafter referred 
to as Paper I) we described how useful identities for static 
stellar models could be obtained by solving an appropriate 
system of partial differential equations. We review now the 
results of that work. 

A static stellar model is a metric, 

"'This research was supported in part by National Science Foundation 
grants PHY·78·09620 and PHY 79·20123. 

(1) 

(where the scalar V and 3-metric gab are independent of the 
coordinate t) which satisfies Einstein's equations: 

VaVa V= 41TV(p + 3p), 

Rab = V- IV aVbV+41T(p-p)gab' 

(2) 

(3) 

In these equations Rab and Va are the Ricci curvature and 
covariant derivative of gab' while p and p are the density and 
pressure of the fluid. The density and pressure are assumed 
to be related by a given equation of state p = p( p), and as a 
consequence of Eqs. (2) and (3) must also satisfy Euler's 
equation: 

VaP = - V-I(p + p)Va V. 

In Paper I it was shown that identities of the form 

Va [KI(V, W)VaV+K2(V, W)VaW] 

= lK (V W)V 4 W- IR R abc + (aK2(V, W) 
4 2 , abc aw 

(4) 

+! W- IK 2(V, W))iVaW-FVaV\2 (5) 

will exist if the functions K I (V, W) and K 2( V, W) satisfy the 
following system of partial differential equations: 

aK I = F 2aK2 _ 41TK VW-I(p + 3p) 
av aw I 

_ (16rV 2 W- I(P + 3p)2 - ~W-IF2 

+ 81TV~ (p + P))K2' (6) 
dV 

aK2 --= _ 2FaK2 _ aKI 
av aw aw 

- [ V-I - 41TVW- I(p + 3p) + 1W-IF] K 2. (7) 

In the above equations W is defined as W = va V Va V; 
F = F (V, W) is a function chosen so that a spherical model 
would satisfy Va W = F Va V; RabeR abc is the square of the 
three-dimensional conformal tensor which vanishes if and 
only if the stellar model is spherical (see Paper I); andp andp 
are taken to be the known functions of V determined by the 
equation of state and Eq. (4). 

Another useful function, introduced in Paper I, is 
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Wo = Wo(V): the function to which Wwould be equal if the 
model were spherical. This function satisfies the second or
der differential equation 

d2Wo 

dV 2 

= ~ dWo + 2-_1_(dWo)2 _ 81T~ dWo ( + 3p) 
V dV 4 Wo dV Wo dV P 

V 2 d 
+ 16~-(p+3pf+81TV-(p+p). (8) 

Wo dV 
For a detailed discussion of these results, the reader 

should consult Paper I. 

III. A SIMPLIFIED PROCEDURE FOR FINDING 
IDENTITIES 

In this section we show how the procedure for finding 
identities in the form ofEq. (5) can be simplified by decou
pling and partially integrating the system of partial differen
tial equations (6), (7). The first step in this procedure is to 
change dependent variables to the set: A (V, W) = K1(V, 
W) +F(V, W)K2(V, W)andB(V, W) =K2(V, WI· We next 
take appropriate linear combinations of Eqs. (6), (7), ex
pressed in these new variables, to obtain the following 
system: 

aA aA 
av +Faw + 41TVW- 1(p + 3p)A 

(
aF aF F 3 F2 V 

= av+Faw - V - 4"w+ 81T
W

F(p+ 3p) 

v2 d) - 16~-1p + 3p)2 - 81TV- (p + p) B, 
W dV 

(9) 

aB aB (aF 1 V 3 F) -+F- - - - -+41T-(p+3p)---
av aw aw V W 2 W. 

aA 
XB+aw=O. (10) 

The next step is to take advantage of the arbitrariness in 
the choice of the function F. The only restriction which F 
must satisfy is that, when the star is spherical (i.e., when 
W = Wo), Fmust satisfy Va W = F Va V; this is equivalent to 
requiring that F (V, Wo) = d Wold V. At this point, however, 
we are free to choose how Fwill behave for W =1= WOo To make 
that choice specific, let us require that F satisfy the following 
partial differential equation: 

aF aF F 3 F2 V 
-+F-=-+-- -81T-F(p+3p) 
av aw V 4 W W 

V 2 d 
+ 16~-(p + 3pf + 81TV-(p +p). 

W dV 
(11) 

Since Eq. (11) reduces to Eq. (8) on the surface W = Wo when 
F= dWoIdV, it follows that Eq. (11) admits solutions which 
satisfyourcriterionF(V, Wo) = dW oIdV. With this choice of 
F, the system of equations (9), (10) decouples. The coefficient 
of Bin Eq. (9) vanishes, so that this equation can be used to 
determineA. Given the solution for A, Eq. (10) can be inte
grated to determine B. 
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To proceed further, it is necessary to change indepen
dent variables from the set (V, W) to a more appropriate set, 
which we call (X, Y). The new variables X = X (V, W) and 
Y = Y(V, W) are defined by the following equations: 

XIV, W) = V, (12) 

(tv + F(V, W) a~)Y(v, W) = o. (13) 

For the discussion that follows, it will be most helpful to 
treat Vand Was the functions of X and Y given by the 
inverse of the transformation defined by Eqs. (12) and (13). 
The differentials of these variables are related by 

.!....=.!....+F~ 
ax av aw' 

(14) 

a aw a 
ay= ayaw· 

(15) 

We note that it follows from Eq. (14) thatF= aw lax. With 
this choice of variables, the equations for A and B become 

aA + 41T X (p + 3p)A = 0, 
ax W 

aB _ [(a~ -I a
2
w _ ~ + 41T X (p + 3p) 

ax ayJ axay x W 

_ 2-~ aJ!'lB + (a~ -laA = o. 
2 waxJ ayJ ay 

(16) 

(17) 

It is straightforward now to completely reduce Eqs. (16) and 
(17) to quadratures. We define the function 

I/I(X Y) = ex {_ 41TJx X'[P(X') + 3P(X')]dX'}. 
,p W(X',Y) 

(18) 

If follows that 

A (X, Y) = a(Y) 1/1 (X, Y), (19) 

B(X,Y) 

= [b (Y) _ JX X'W3/2(a~ - 2 aA I/I(X' Y)dx,]aw/ 
ayJ ay , ay 

[XW 3/21/1], (20) 

whereat Y) and b (Y) are completely arbitrary C 1 functions of 
Y. These quadratures [Eqs. (18)-(20)] can be performed as 
soon as one determines the function W(X, Y). Since 
F = a W / ax, as we have seen, the real problem lies in deter
mining the function F from Eq. (11). This problem can be 
expedited by changing to the variables (X, Y) discussed 
above, and making the substitution F = aw lax in Eq. (11): 

a2w 1 aw 3 l{aJfV X aw 
ax 2 - X ax - 4"W\axJ + 81T W ax(p + 3p) 

X 2 d 
- 16~W(p + 3pf - 81TX dX(P + p) = O. (21) 

We note that only the independent variable X appears explic
itly in Eq. (21). Therefore, the equation to determine W (X, Y) 
is an ordinary differential equation. In fact this is the same 
differential equation used to determine Wo, Eq. (8). The only 
difference between Wo and W then is one of boundary condi
tions. The boundary conditions on Wo are uniquely deter-
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mined by the asymptotic flatness conditions and appropriate 
smoothness conditions at the surface of the star (see Paper I). 
On the other hand, W(X, Y) is a one-parameter family of 
solutions to Eq. (21). Since Eq. (21) is a second order equa
tion, there are in principle two free parameters in the most 
general solution. Therefore, there is considerable freedom 
still available in the choice of the function W(X, Y). 

To summarize, we have succeeded in reducing the prob
lem of finding identities from that of solving the system of 
partial differential equations (6), (7) to that of solving the 
single ordinary differential equation (21) plus the quadra
tures in Eqs. (18)-(20). 

IV. EXAMPLES: NEW VACUUM IDENTITIES 

fo illustrate the generality and usefulness of the simpli
fications which have been presented here, we show now how 
every previously discussed identity for vacuum and uniform 
density spaces is a special case of the results presented here. 
Also, we explicitly write down the most general vacuum 
identity of this type. These vacuum identities are significant
ly more general than those presented elsewhere l

-4 and may 
possibly provide the way to show that no multiple static 
vacuum black hole solutions exist. 

Turning to the uniform density case first, we find that a 
one-parameter family of solutions to Eq. (21) is given by 

W= Wo(X) + Y, 

Wo = ~1TpX(3Xs -X) + j1Tp(l - 9X;), 

(22) 

(23) 

where p is the density of the star and Xs is the value of X at 
the surface of the star. Given these integrals of Eq. (21), it is 
straightforward to evaluate the quadratures in Eqs. (18)
(20). In particular, we find 

A (X, Y) = a(y)W- 3/2
, (24) 

B(X, Y) 

=X-1[b(Y)- IX X'(:~ w-fa)W- S/2dX'], 

(25) 

The integral indicated here is simple to perform [using Eqs. 
(22), (23)], but the result is lengthy and unenlightening. The 
uniform density identity presented in Paper I is the special 
case of the above with a( Y) = O. 

For vacuum spaces, it is possible to explicitly evaluate 
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the most general integral ofEq. (21). In particular, we find 
that the general solution is given by 

W(X, Y) = [g(y)X2 + h (YW, (26) 

where g and h are arbitrary functions of Y. It is also straight
forward now to perform the quadratures in Eqs. (18)-(20). If 
dg/dY g'#O, we find 

A (X, Y) = a(Y), (27) 

B(X Y)_ 4(g'X
2
+h')[b(Y) a' ] 

, - XW 3/4 + 32g'(g'X 2 + h') , 
(28) 

where a' = da/dY, etc. Wheng' = 0, we get Eq. (27) and 

B(X Y) =~[b(Y) _ a'X
2

] (29) 
'XW 3/4 32h,2 . 

Specific examples of these vacuum identities have been given 
by Israel, I Robinson/ and in Paper I. One example given in 
PaperIisg(Y) = - h (Y) = - ~M-I/2yI/4, whereMisthe 
constant which is the asymptotically defined mass of the star 
(or black hole). The identities of Israel and Robinson are 
special cases of this example, as was shown in Paper I. An
other example given in Paper I (except for typographical 
errors)isg(Y)= -~M-1/2andh(Y)=~M-1/2+ Y. 
Clearly a large number of other possibilities also exist for 
other choices ofg and h. Perhaps some of these identities can 
be used to eliminate the possibility of multiple static vacuum 
black holes. 

Note added in proof An error has been discovered in 
Sec. V of Paper I. The argument given there, that uniform 
density static stellar models must be spherical, is not correct. 
One can only conclude, from an argument such as that pre
sented there, that any nonspherical uniform density model 
must have W /Wo < 1 everywhere (including spatial infinity). 
This implies, for example that the constants of a nonspheri
cal model must satisfy the inequality 321TpM 2 > 3(1 - V~)3. 

IW. Israel, Phys. Rev. 164, 1776119671. 
2H. Miiller zum Hagen, D. C. Robinson, and H. J. Seifert, Gen. ReI. Grav. 
4, 53 (1973). 

'D. C. Robinson, Gen. ReI. Grav. 8, 695 (1977). 
4L. Lindblom, J. Math. Phys. 21,1455 (1980) (Paper I). 
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